Title No. S118-128

Effects of Concrete Tail Cover and Tail Kickout on Anchorage Strength of 90-Degree Hooks

by Samir Yasso, David Darwin, and Matthew O'Reilly

The effects of concrete tail cover and tail kickout on the anchorage strength of hooked bars were investigated. The study included 195 simulated beam-column joint specimens containing two No. 5, 8, or 11 (No. 16, 25, or 36) hooked bars. Bar stresses at anchorage failure ranged from 33,000 to 141,000 psi (228 to 972 MPa), and concrete compressive strengths ranged from 4490 to 16,180 psi (31 to 112 MPa). Tail cover ranged from 3/4 to 3-5/8 in. (19 to 92 mm) and tail kickout occurred for approximately 7% of the hooked bars used in the analysis. Hooked bars were placed inside or outside the column core with or without confining reinforcement in the joint region. Tail kickout was only observed in conjunction with other modes of failure and was not, in any case, the only mode of failure. The likelihood of tail kickout increases for hooked bars placed outside the column core, as compared to hooked bars placed inside the column core, as confining reinforcement within the joint region decreases, and as the size of the hooked bar increases. The anchorage strength of hooked bars with a 90-degree bend angle is not affected by hook tail covers as low as 3/4 in. (19 mm) or tail kickout at failure.

Keywords: beam-column joint; high-strength concrete; high-strength steel; hooked bars; reinforced concrete; tail cover; tail kickout.

INTRODUCTION

ACI 318-14 (ACI Committee 318 2014) included provisions that permitted the development length of hooked bars to be reduced by 30% if the hooks had a minimum side cover of 2.5 in. (65 mm) and, for 90-degree hooks, a minimum tail cover of 2 in. (50 mm). The requirements in ACI 318-14 were based on a study by Marques and Jirsa (Jirsa and Marques 1972; Marques and Jirsa 1975) of hooked bars in simulated beam-column joints with 1-1/2 and 2-7/8 in. (38 and 73 mm) side cover. The study demonstrated that anchorage strength increases when hooked bars are placed inside the longitudinal column bars and when confining reinforcement is provided in the joint region. They observed that side cover did "not seem to be too important as long as a local failure at the inside of the bend" did not occur. The effect of tail cover on anchorage strength was not investigated. Although not described using this terminology, failure modes consisted of front breakout or side splitting. Minor and Jirsa (1975) identified a third failure mode, tail kickout, in which 90-degree hooked bars straighten at failure, with the tail of the hook punching through the back cover in a beam-column joint. Sperry et al. (2015a, 2017a) examined 158 beam-column joint specimens containing No. 5, 8, or 11 (No. 16, 25, or 36) hooked bars, of which 116 had 2.5 in. (65 mm) side cover and 42 had 3.5 in. (90 mm) side cover. Sperry et al. (2015a, 2017a)

observed that varying the concrete side cover between 2.5 and 3.5 in. (65 and 90 mm) did not affect anchorage strength. Studies by Sperry et al. (2015a,b, 2017a,b, 2018), Yasso et al. (2017), and Ajaam et al. (2017, 2018) served as the basis for the new hooked bar provisions in ACI 318-19 (ACI Committee 318 2019). Among the changes, the new provisions removed the requirement for minimum tail cover on 90-degree hooks.

This paper describes the effects of tail cover and tail kickout at failure on the anchorage strength of 90-degree hooked bars that justify the removal of minimum tail cover requirements for 90-degree hooks. Failure modes are identified and anchorage strengths are compared.

RESEARCH SIGNIFICANCE

The design provisions for hooked bars in ACI 318-14 allowed the modification of the calculated development length when providing adequate side and tail cover for 90-degree hooks. ACI 318-19 allows the modification of the development length for hooked bars terminating inside a column core with side cover normal to the plane of the hook of at least 2.5 in. (65 mm) or in any case where the side cover normal to the plane of the hook is at least six bar diameters. Both versions of ACI 318 require the use of minimum confining reinforcement for hooked bars at discontinuous ends of members with both side cover and top (or bottom) cover to the hook of less than 2.5 in. (65 mm). ACI 318-19 no longer requires minimum tail cover. This study investigates the effects of concrete tail cover below the minimum tail cover requirements in ACI 318-14, as well as the role of tail kickout due to low tail cover on hooked bar anchorage strength.

EXPERIMENTAL PROGRAM

This paper describes a study that is part of a larger experimental program to investigate the behavior and anchorage strength of hooked bars (Sperry et al. 2015a). The overall program included 338 beam-column joint specimens. The effect of concrete compressive strength, side cover, hook bend angle, number of hooked bars, and center-to-center spacing were addressed by Sperry et al. (2015a,b, 2017a,b), Yasso et al. (2017), and Ajaam et al. (2017, 2018). This

ACI Structural Journal, V. 118, No. 6, November 2021.

MS No. S-2020-395.R1, doi: 10.14359/51732990, received April 16, 2021, and reviewed under Institute publication policies. Copyright © 2021, American Concrete Institute. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors. Pertinent discussion including author's closure, if any, will be published ten months from this journal's date if the discussion is received within four months of the paper's print publication.

Fig. 1—Schematic of typical specimen: (a) side view of specimen; (b) cross section of specimen with two hooks inside column core with confining reinforcement; and (c) cross section of specimen with two hooks outside column core with confining reinforcement.

paper deals with a subset of these specimens. Details of the specimens are provided in Appendix A.*

The effect of low concrete tail cover on anchorage strength and mode of failure was examined using 195 specimens with two hooked bars, of which 127 specimens had confining reinforcement in the joint region and 68 did not. From the 195 specimens, a total of 381 hooked bars produced useable data for the analysis—some specimens had useable data for just one of the two hooked bars, typically because the second hooked bar reached its tensile strength prior to an anchorage failure occurring or the load reached the maximum capacity of the test apparatus. Concrete tail cover ranged from 3/4 to 3-5/8 in. (19 to 92 mm). Concrete compressive strengths ranged from 4490 to 16,180 psi (31 to 112 MPa), and stresses in the hooked bars at failure ranged from 33,000 to 141,000 psi (228 to 972 MPa).

Test specimens

The test specimens in this study (Fig. 1) were designed to simulate exterior beam-column joints. The specimens represent joints containing two hooked bars and had a nominal 2 in. (50 mm) concrete cover to the tail of the hook. Actual

tail covers varied, providing an opportunity to determine the effect of a tail cover less than 2 in. (50 mm) on the anchorage strength of 90-degree hooks. The hooked bars were located either inside or outside the column core. The column core is defined as the region enclosed by the column longitudinal bars. Although placing hooked bars outside the column core is not usual in practice, hooked bars were placed outside the column core in some specimens to simulate the use of hooked bars in locations without confinement by column steel, such as at the free end of cantilever beams. Side cover for the specimens ranged from 1.5 to 4.5 in. (38 to 114 mm) with 2.5 or 3.5 in. (64 or 89 mm) side cover used for the majority of the specimens.

In this study, embedment length ℓ_{eh} refers to the distance measured from the column face to the back of the tail of the hook, while development length ℓ_{dh} refers to the minimum length required in Section 25.4.3 of ACI 318-19 to ensure a bar can develop its specified yield strength.

When proportioning the test specimens, the nominal concrete cover to the tail of the hook was added to the embedment length to determine the depth of the column. The nominal side cover was added to the out-to-out spacing of the hooks (equal to the nominal center-to-center spacing plus one hooked bar diameter) to determine the width of the column.

^{*}The Appendix is available at **www.concrete.org/publications** in PDF format, appended to the online version of the published paper. It is also available in hard copy from ACI headquarters for a fee equal to the cost of reproduction plus handling at the time of the request.

Table	1—Co	oncrete	mixture	prop	ortions
-------	------	---------	---------	------	---------

Material	Quantity (SSD)						
Design compressive strength, psi	5000	8000	12,000	15,000			
Type I/II cement, lb/yd ³	600	700	750	760			
Type C fly ash, lb/yd ³				160			
Silica fume, lb/yd ³				100			
Water, lb/yd ³	263	225	217	233			
Crushed limestone*, lb/yd3	1734	1683	1796				
Granite [†] , lb/yd ³				1693			
Pea gravel [‡] , lb/yd ³			316				
Kansas river sand [§] , lb/yd ³	1396	1375	1050	1138			
Estimated air content, %	1	1	1	1			
High-range water-reducer, oz (US)	30	171	104#	205#			
w/cm	0.44	0.32	0.29	0.24			

Bulk specific gravity (saturated surface-dry) = *2.60, †2.61, ‡2.59, and §2.63.

Admixture 1.

#Admixture 2.

Note: 1 ksi = 6.89 MPa; 1 oz = 29.57 mL; and 1 lb/yd³ = 0.593 kg/m³.

Column reinforcement was designed to provide adequate flexural and shear strength assuming that all hooked bars in a specimen reached the anticipated peak load simultaneously. Different levels of confining reinforcement were provided within the joint region to determine the effect of confinement on anchorage strength. Confining reinforcement in the joint region ranged from none to six No. 3 (No. 10) hoops (details are provided in Appendix A). The height of the column was selected so that the reaction at the top of the specimen would not interfere with the failure region. A column height of 52-3/4 in. (1340 mm) was used for specimens containing No. 5 or No. 8 (No. 16 or No. 25) hooked bars and a height of 96 in. (2440 mm) was used for the specimens containing No. 11 (No. 36) hooked bars.

Material properties

Normalweight concrete with nominal compressive strengths of 5000, 8000, 12,000, and 15,000 psi (34, 55, 83, and 103 MPa) was used in the study. Actual compressive strengths ranged from 4490 to 16,180 psi (31 to 112 MPa). Type I/II portland cement, crushed limestone with a maximum aggregate size of 3/4 in. (19 mm), and Kansas River sand were used in the concrete mixtures. Pea gravel was used for the 12,000 psi (83 MPa) concrete to improve workability. Polycarboxylate-based high-range water-reducing admixtures were used to achieve the required workability and strength. Mixture proportions are listed in Table 1.

The majority of hooked bars were fabricated from ASTM A1035 Grade 120 (Grade 830) steel, with the balance fabricated from ASTM A615 Grades 60 and 80 (Grades 420 and 550) steel. The properties for the reinforcing steel used for the hooked bars in the tests, including yield and tensile strength, nominal diameter, deformation height and spacing, and relative rib area, are listed in Table 2.

Due to the high flexural demand for some columns, ASTM A1035 Grade 120 (830 MPa) reinforcing bars

ACI Structural Journal/November 2021

were occasionally used as longitudinal reinforcement, but most specimens used ASTM A615 Grade 60 (420 MPa) bars as longitudinal reinforcement. ASTM A615 Grade 60 (420 MPa) was used for column ties. The details on the type of reinforcement in the individual specimens are given in Appendix A.

Loading system and test procedure

Figure 2 shows the loading system used in this study, which is a modified version of the test frame used by Marques and Jirsa (1975). The system simulates the forces applied at an exterior beam-column joint by applying tensile loads to the hooked bars. Each bar was loaded independently by a hydraulic jack. The force representing the compression reaction in the beam is provided by the steel Bearing Member. The Upper Compression Member prevents the column from overturning and is placed so as to not interfere with the failure region. The flange widths for the Upper Compression Member and Bearing Member were 6-5/8 and 8-3/8 in. (168 and 213 mm), respectively. The locations of the reaction forces (bearing members) for the different size hooked bars, measured from the center of the hooked bar, are shown in Table 3. A detailed description of the test apparatus is provided by Peckover and Darwin (2013).

Axial compressive loads were placed on the column to more accurately simulate column loading conditions. For specimens with No. 5 and No. 8 (No. 16 and No. 25) hooked bars, a constant axial force of 30,000 lb (133,447 N) was applied to the specimens, producing axial stresses of 90 to 460 psi (0.62 to 3.17 MPa). A constant axial stress of 280 psi (1.93 MPa) was applied to specimens with No. 11 (No. 36) hooked bars. Some of the early tests had a constant force of 80,000 lb (356,000 N), which resulted in axial stress on specimens ranging from 505 to 1930 psi (3.48 to 13.31 MPa). Marques and Jirsa (1975) found that differences in axial stress up to 3000 psi (21 MPa) did not affect the anchorage

Table 2—Hooked bar properties

	ASTM	Yield			Average	Average defo	ormation height	Gap		
Bar size	specifica- tion	strength, ksi*	Tensile strength, ksi	Nominal diameter, in.	deformation spacing, in.	A†, in.	B [‡] , in.	Side 1, in.	Side 2, in.	Relative rib area [‡]
5 (16)	A615	69	108	0.625	0.417	0.031	0.029	0.179	0.169	0.060
5 (16)	A1035	128	160	0.625	0.391	0.038	0.034	0.200	0.175	0.073
8 (25)	A615	76	95	1.0	0.666	0.059	0.056	0.146	0.155	0.073
8 (25)§	A1035	131	167	1.0	0.686	0.068	0.065	0.186	0.181	0.084
8 (25)	A1035	135	168	1.0	0.574	0.057	0.052	0.16	0.157	0.078
8 (25)#	A1035	129	168	1.0	0.666	0.056	0.059	0.146	0.155	0.073
11 (36)	A615	84	113	1.41	0.894	0.080	0.074	0.204	0.196	0.069
11 (36)	A1035	123**	164**	1.41	0.830	0.098	0.088	0.248	0.220	0.085

*From mill test report, unless otherwise noted.

[†]Per ASTM A615 and A706.

[‡]Per ACI 408.3R-09.
[§]Heat 1.
[‡]Heat 2.
[#]Heat 3.
**From tensile test.
Note: 1 in. = 25.4 mm; 1 ksi = 6.89 MPa.

1000. Thi. 25. Thin, Tkir 0.07 MTu.

	Size of hooked bar					
	No. 5	No. 8	No. 11			
Height of specimen, in.*	52-3/4	52-3/4	96			
Distance from center of hook to top of bearing member flange h_{cl} , in.*	5-1/4	10	19-1/2			
Distance from center of hook to bottom of upper compression member flange h_{cu} , in.*	18-1/2	18-1/2	48-1/2			

*Refer to Fig. 2.

Note: 1 in. = 25.4 mm; No. 5 (No. 16); No. 8 (No. 25); No. 11 (No. 36).

strength of the hooked bars; thus, the effect of different values of axial stress was not examined in this study.

Hydraulic jacks were used to apply the tensile forces to the hooked bars, simulating tensile forces in beam negative moment reinforcement. Load was applied monotonically in steps of 5000 or 10,000 lb (22,200 or 44,500 N) depending on the specimen size. Loading was paused after each step to allow cracks to be marked. The force on each hooked bar was measured using a load cell. Anchorage strength was taken as the average force per hooked bar corresponding to the maximum total force at failure. The maximum force for each hooked bar was also recorded and used when the individual hooked bar strength was evaluated, although this did not, in general, coincide with the maximum total force on the system.

TEST RESULTS AND DISCUSSION

This section describes the modes of failure observed during the tests and the effects of concrete tail cover and tail kickout on anchorage strength. Anchorage strengths are compared for specimens and individual hooked bars, where the test-to-calculated strength ratios were calculated using a descriptive equation for two widely spaced hooked bars developed by Sperry et al. (2015b, 2017b) and presented later in this paper. As described earlier, hooked bars were placed inside or outside the column core. Prior studies have found that hooked bars placed outside the column core have lower anchorage strengths than hooked bars placed inside the column core (Sperry et al. 2015a; Yasso et al. 2017). Student's t-test (Draper and Smith 1981) is used to determine if the differences in anchorage strength of hooked bars with low tail cover and hooked bars that comply with concrete cover requirements in Section 25.4.3.2 of ACI 318-14 are statistically significant.

Failure modes

Three failure modes were observed for beam-column joint specimens: front breakout (F), in which a mass of concrete is pulled out with the hooked bars from the front face of the column; side splitting (S), in which the side face of the column spalls off after vertical cracks form in the plane of a hook; and tail kickout (TK), where the tail of a 90-degree hook pushes the concrete cover off of the back of the column. Tail kickout (TK) was only observed in conjunction with other failure types. The majority of the specimens containing two hooked bars experienced a combination of more than one failure mode, with front breakout predominating. Examples of the failure modes are shown in Fig. 3.

Effects of hooked bar tail cover

This section examines the effect of having tail cover less than the 2 in. (50 mm) minimum required by Section 25.4.3.2 of ACI 318-14 to apply the 0.7 modification factor to the development length of hooks with a 90-degree bend angle. In addition to a tail cover of 2 in. (50 mm) for the 90-degree hooks, Section 25.4.3.2 of ACI 318-14 required a minimum side cover of 2.5 in. (65 mm) for both 90- and 180-degree hooks.

(c)

Fig. 3—Failure modes: (a) front breakout (F); (b) side splitting (S); and (c) tail kickout (TK).

The comparisons are based on the 195 specimens in this study that contained two hooked bars, 167 with hooked bars placed inside the column core and 28 with hooked bars placed outside the column core. The comparisons include all 381 hooked bars that produced useable data, 329 inside the column core, and 52 outside the column core (some specimens had usable data for only one of the two hooks). Because actual covers and embedment lengths may vary for hooked bars in the same specimen, the peak load on an individual hooked bars *T* is used when analyzing the effect of tail cover on anchorage strength. The average peak load on the hooked bars, *T*, is obtained by dividing the maximum total load on a group of hooked bars by the number of bars.

Measured average or individual anchorage strengths are compared with anchorage strengths calculated using Eq. (1). The equation was developed by Sperry et al. (2015b) using *T* from specimens with two widely spaced hooked bars placed inside the column core

$$T_{h} = 332 f_{cm}^{0.29} \ell_{eh}^{1.06} d_{b}^{0.54} + 54,250 \left(\frac{NA_{tr}}{n}\right)^{1.06} d_{b}^{0.59}$$
(1)

where T_h is the force in a hooked bar at failure (lb); f_{cm} is the measured concrete compressive strength using 6 x 12 in. (150 x 300 mm) standard cylinders at the time of test (psi); ℓ_{eh} is the hooked bar embedment length (in.); d_b is the hooked bar diameter (in.); N is the number of legs of confining reinforcement parallel to the straight portion of the hooked bars within a distance of $8d_b$ from the top of the hooked bar for bars up to No. 8 (No. 25) and $10d_b$ for from the top of the bar for No. 9 through No. 11 (No. 29 through

Fig. 4—Tail cover distribution for hooked bars used in current study. (Note: 1 in. = 25.4 mm.)

No. 36) bars; A_{tr} is the area of a single leg of confining reinforcement (in.²); and *n* is the number of hooked bars in the joint confined by *N* legs of confining reinforcement. Equation (1) has a mean test-to-calculated strength ratio T/T_h of 1.0 for specimens both without and with confining reinforcement. For specimens without and with confining reinforcement, the coefficients of variation are 0.119 and 0.112, the minimum test-to-calculated strength ratios are 0.73 and 0.68, and the maximum test-to-calculated strength ratios are 1.29 and 1.28, respectively (Sperry et al. 2015b).

The average values of T_{ind}/T_h for the specimens containing two hooked bars without and with confining reinforcement inside the column core used to develop Eq. (1) are 1.05 and 1.04, respectively, compared to a value of 1.0 for T/T_h . Because individual hooked bars will reach their peak loads at different points of time (and not necessarily at the peak load for the specimen as a whole), it is expected that the average values of T_{ind}/T_h would exceed those of T/T_h . For specimens with hooked bars placed outside the column core, the average T_{ind}/T_h are 0.99 and 0.89 for specimens without and with confining reinforcement, respectively, compared to values of T/T_h of 0.90 and 0.84 for specimens without and with confining reinforcement obtained when using the average peak load T.

Figure 4 shows the distribution of the actual tail cover for the hooked bars in this study. Out of the 381 hooked bars examined, 123 had a tail cover below 2 in. (50 mm); of these, 110 were inside the column core, and 13 were outside the column core.

Tables 4 and 5 include the mean, standard deviation, and coefficient of variation for the test-to-calculated strength ratios for individual hooked bars T_{ind}/T_h and the average peak load T/T_h for specimens without and with confining reinforcement, respectively. The hooked bars are classified

based on location (inside or outside the column core). The tables show the values for five categories: hooks with tail cover less than 1-1/2 in. (38 mm), hooks with tail cover from 1-1/2 to 2 in. (38 to 50 mm), hooks with tail cover less than 2 in. (50 mm), hooks with a tail cover of 2 in. (50 mm) or greater, and hooks exhibiting tail kickout. Student's t-test is used to determine if the differences in the values of T_{ind} T_h and T/T_h between those for the different categories and those for the hooked bars with tail cover of 2 in. (50 mm) or greater, the minimum cover required by Section 25.4.3.2 of ACI 318-14 to apply the 0.7 modification factor to development length, are statistically significant. The parameter p from Student's t-test, also shown in Tables 4 and 5, represents the probability that the difference in the mean value between the set under consideration and that of the set with tail cover greater than or equal to 2 in. (50 mm) is due to random variations. Values of p smaller than a selected threshold (p = 0.05for this study) indicate that the differences in datasets are statistically significant.

Hooked bars with tail cover less than 1-1/2 in. (38 mm)— Based on Table 20.5.1.3.1 in ACI 318-19, the minimum cover that beams and columns can have when not exposed to weather or in contact with the ground is 1-1/2 in. (38 mm). In this study, 25 hooked bars in 21 specimens had a tail cover less than 1-1/2 in. (38 mm); 23 of these hooked bars were inside the column core, 17 without confining reinforcement and six with. The two specimens with hooked bars outside the column core had confining reinforcement.

For the 17 hooked bars with tail cover less than 1-1/2 in. (38 mm), no confining reinforcement, placed inside the column core, the average value of T_{ind}/T_h is 1.08, compared to 1.04 for hooked bars with tail cover of 2 in. (50 mm) or greater. This difference (a reduction with increasing cover) is not statistically significant (p = 0.24), indicating that the

		Hoc (Results b	ked bars ased on T_{ind}/T_h)	Specimens (Results based on T/T_h)		
Hook le	ocation	Outside core	Inside core	Outside core	Inside core	
	Mean		1.08		1.01	
Hooked bars with tail cover	STD		0.11		0.10	
< 1-1/2 in.	COV		0.11		0.10	
17 hooked bars (14 specimens)	p^*		0.24		0.59	
(1.1900111010)	No. of hooked bars or specimens	0	17	0	14	
	Mean	1.05	1.04	0.92	0.98	
Hooked bars with tail cover	STD	0.13	0.17	0.16	0.13	
\geq 1-1/2 and < 2.0 in.	COV	0.12	0.17	0.17	0.13	
32 hooked bars (23 specimens)	р	0.37	0.87	0.73	0.70	
(,	No. of hooked bars or specimens	5	27	4	19	
	Mean	1.05	1.05	0.92	1.00	
Hooked bars with tail cover	STD	0.13	0.15	0.16	0.12	
<2 in.	COV	0.12	0.14	0.17	0.12	
49 hooked bars (34 specimens)	р	0.37	0.69	0.73	0.91	
(*****************	No. of hooked bars or specimens	5	44	4	30	
	Mean	0.98	1.04	0.89	1.00	
Hooked bars with tail cover	STD	0.19	0.13	0.13	0.11	
≥ 2 in.	COV	0.19	0.13	0.14	0.11	
84 hooked bars (52 specimens)	р	N/A	N/A	N/A	N/A	
()	No. of hooked bars or specimens	21	63	12	40	
TT 1 1112 41	Mean	0.95	1.05	0.93	1.02	
kickout	STD	0.12	0.12	0.16	0.11	
22 hooked bars	COV	0.12	0.11	0.17	0.11	
(1 / specimens)	р	0.42	0.08	0.82	0.44	
	No. of hooked bars or specimens	6	16	4	13	

Table 4—Mean, standard deviation, and coefficient of variation for T_{ind}/T_h and T/T_h without confining reinforcement, with T_h based on Eq. (1)

*Probability that difference in the mean value of the set under consideration and that of the set with tail cover ≥ 2 in. (50 mm) is due to random variation. For this study, values of 0.05 and less indicate differences are statistically significant.

Note: 1 in. = 25.4 mm.

reduction in tail cover did not impact the strength of these specimens. For the six hooked bars with tail cover less than 1-1/2 in. (38 mm), with confining reinforcement, placed inside the column core, T_{ind}/T_h is 0.95, compared to 1.05 when hooked bars with tail cover of 2 in. (50 mm) or greater; the difference is statistically significant (p = 0.02). For the two hooked bars with tail cover less than 1-1/2 in. (38 mm), with confining reinforcement, placed outside the column core, T_{ind}/T_h is 1.11, compared to 0.87 for hooked bars with tail cover of 2 in. (50 mm) or greater; the difference is statistically significant (p = 0.03). Hooked bars with tail cover of 2 in. (50 mm) or greater; the difference is statistically significant (p = 0.03). Hooked bars placed outside the column core are expected to have lower test-to-calculated strength ratios when compared to T_h calculated using Eq. (1) than hooked bars placed inside the column core, but the

average T_{ind}/T_h value of 1.11 for the two hooked bars with confining reinforcement placed outside column core shows the opposite. The comparisons show that the average value of T_{ind}/T_h for hooked bars with a tail cover less than 1-1/2 in. (38 mm) for the two comparisons based on small samples is larger in one case and smaller in the other than for hooked bars with a tail cover of 2 in. (50 mm) or greater. The differences in both cases are statistically significant. In the third case, based on a larger sample size, T_{ind}/T_h for hooked bars with a tail cover less than 1-1/2 in. (38 mm) is greater than for hooked bars with tail cover of 2 in. (50 mm) or greater, but the difference is not statistically significant. Overall, tail cover below 1-1/2 in. (38 mm) does not influence anchorage strength.

		Hook (Results ba	ted bars sed on T_{ind}/T_h)	Specimens (Results based on T/T_h)		
Hook le	ocation	Outside core	Inside core	Outside core	Inside core	
	Mean	1.11	0.95	0.90	0.94	
Hooked bars with tail cover	STD	0.06	0.07	0.07	0.09	
< 1-1/2 in.	COV	0.06	0.08	0.08	0.09	
8 hooked bars (7 specimens)	p^*	0.03	0.02	0.33	0.20	
(, specificity)	No. of hooked bars or specimens	2	6	2	5	
	Mean	0.87	1.07	0.85	1.02	
Hooked bars with tail cover	STD	0.15	0.12	0.16	0.10	
\geq 1-1/2 and < 2.0 in.	COV	0.17	0.12	0.19	0.10	
66 hooked bars (54 specimens)	р	0.98	0.28	0.76	0.20	
(0.1.2)	No. of hooked bars or specimens	6	60	5	49	
	Mean	0.93	1.06	0.85	1.02	
Hooked bars with tail cover	STD	0.17	0.13	0.14	0.10	
< 2 in.	COV	0.18	0.12	0.17	0.10	
74 hooked bars (56 specimens)	р	0.43	0.59	0.72	0.25	
(,	No. of hooked bars or specimens	8	66	6	50	
	Mean	0.87	1.05	0.82	1.00	
Hooked bars with tail cover	STD	0.17	0.15	0.16	0.12	
≥ 2 in.	COV	0.19	0.15	0.19	0.12	
174 hooked bars (106 specimens)	р	N/A	N/A	N/A	N/A	
()	No. of hooked bars or specimens	18	156	12	94	
II. de estitica dell	Mean		0.97		0.95	
kickout	STD		0.05		0.04	
3 hooked bars	COV		0.05		0.04	
(3 specimens)	р		0.08		0.10	
	No. of hooked bars or specimens	0	3	0	3	

Table 5—Mean, standard deviation, and coefficient of variation for T_{ind}/T_h and T/T_h with confining reinforcement, with T_h based on Eq. (1)

*Probability that difference in the mean value of the set under consideration and that of the set with tail cover ≥ 2 in. (50 mm) is due to random variation. For this study, values of 0.05 and less indicate differences are statistically significant.

Note: 1 in. = 25.4 mm.

Hooked bars with tail cover less than 2 in. (50 mm)—In the current study, a total of 123 hooked bars in 90 specimens had a tail cover less than 2 in. (50 mm); 110 were inside the column core, 44 without confining reinforcement and 66 with confining reinforcement; and 13 were outside the column core, five without confining reinforcement and eight with confining reinforcement. These hooked bars include the 25 hooked bars with tail cover less than 1-1/2 in. (38 mm) described previously. While the differences are not as extreme as when comparing hooked bars with tail cover less than 1-1/2 in. (38 mm) with those with tail cover of 2 in. (50 mm) or greater, looking at hooked bars with tail cover less than 2 in. (50 mm) provides a larger database for comparison. For the 44 hooked bars with tail cover less than 2 in. (50 mm), without confining reinforcement, placed inside the column core, T_{ind}/T_h is 1.05. For the 66 hooked bars with tail cover less than 2 in. (50 mm), with confining reinforcement, placed inside the column core, T_{ind}/T_h is 1.06. These values are virtually identical to the values of 1.04 and 1.05 for hooked bars with tail cover of 2 in. (50 mm) or greater without and with confining reinforcement, respectively. Student's t-test shows that the differences in anchorage strength are not statistically significant, with *p* equal to 0.69 and 0.59 for hooked bars without and with confining reinforcement, respectively. For the five hooked bars with tail cover less than 2 in. (50 mm), without confining reinforcement, placed outside the column core, T_{ind}/T_h is 1.05. For the eight hooked bars with tail cover less than 2 in. (50 mm), with confining reinforcement, and

	Bar size	All bar sizes	No. 5	No. 8	No. 11
Outside column core	Without confining reinforcement	6		3	3
	With confining reinforcement				
x · 1 1	Without confining reinforcement	16	1	6	9
Inside column core	With confining reinforcement	3			3
Nu (% with r	mber of hooked bars espect to the same bar size)	25 (6.6%)	1 (1.0%)	9 (4.9%)	15 (16.0%)

Table 6—Hooked bars exhibiting tail kickout versus bar size

Note: No. 5 (No. 16); No. 8 (No. 25); No. 11 (No. 36).

hooks placed outside the column core, T_{ind}/T_h is 0.93. These values compare with 0.98 and 0.87 for hooked bars placed outside the column core with tail cover of 2 in. (50 mm) or greater. The values of *p* from Student's t-test are above 0.05 for these specimens, which along with the mean values indicate that tail cover less than 2 in. (50 mm) did not affect anchorage strength.

Effects of tail kickout

Out of the 381 hooked bars used to determine the effect of tail cover on anchorage strength, 25 hooked bars (6.6%) in 20 specimens exhibited tail kickout, as shown in Table 6. Of these, 19 were anchored inside the column core and six were anchored outside the column core. Sixteen of the hooked bars inside the column core had confining reinforcement and three did not, while the six hooked bars outside the column core did not have confining reinforcement. For hooked bars exhibiting tail kickout, the average T_{ind} T_h is 1.05 for hooked bars inside the column core without confining reinforcement, as shown in Table 4. This value of T_{ind}/T_h is identical to the value for hooked bars not exhibiting tail kickout. For hooked bars inside the column core with confining reinforcement, only three No. 11 (No. 36) hooked bars exhibited tail kickout. The average value of T_{ind}/T_h is 0.97 compared to the average T_{ind}/T_h of 1.04 for all hooked bars placed inside column core with confining reinforcement. This difference in strength, however, is not statistically significant (p = 0.08). For the six hooked bars placed outside the column core without confining reinforcement that exhibited tail kickout, the average value of T_{ind}/T_h is 0.95, compared to the average T_{ind}/T_h of 0.97 for all hooked bars placed outside the column core without confining reinforcement. This difference in strength is again not statistically significant (p = 0.42). When comparing the average values of T_{ind}/T_h for the hooked bars exhibiting tail kickout with those for all specimens, Student's t-test shows that the differences in anchorage strength are not statistically significant, demonstrating that the occurrence of tail kickout does not affect the anchorage strength of hooked bars.

Table 6 shows the number of hooked bars that exhibited tail kickout based on bar size. The table shows that out of the 25 hooked bars exhibiting tail kickout, 15 were No. 11 (No. 36) bars, nine were No. 8 (No. 25) bars, and one was a No. 5 (No. 16) bar, representing 16.0, 4.9, and 1.0% of the tests for the respective bar sizes, indicating that for a given cover, the larger the bar size, the greater the tendency to exhibit tail kickout. Despite the tendency of the larger bars

to exhibit tail kickout, the anchorage strength of these bars was unaffected, with mean values of T_{ind}/T_h equal to 0.89, 1.10, and 1.01 for No. 5, No. 8, and No. 11 (No. 16, No. 25, and No. 36) bars placed inside the column core, respectively, and a mean value of T_{ind}/T_h equal to 0.95 for both No. 8 and No. 11 (No. 25 and No. 36) bars placed outside the column core, respectively.

SUMMARY AND CONCLUSIONS

In this study, 195 specimens with two hooked bars (381 individual hooked bars) were used to investigate the effects of having tail cover less than 2 in. (50 mm) (the minimum cover required by Section 25.4.3.2 of ACI 318-14 to allow the use of the development length modification factor of 0.7on anchorage strength) and the occurrence of tail kickout at failure on anchorage strength. The specimens were cast in normalweight concrete and contained two No. 5, 8, and 11 (No. 16, 25, and 36) hooked bars. Bar stresses at failure ranged from 33,000 to 141,000 psi (228 to 972 MPa) and concrete compressive strength ranged from 4490 to 16,180 psi (31 to 112 MPa). Tail cover ranged from 3/4 to 3-5/8 in. (19 to 92 mm) and tail kickout occurred for approximately 7% of the hooked bars used in the analysis. Out of the 195 specimens used to evaluate the tail cover effect, 167 specimens had hooked bars placed inside the column core, of which 54 had no confining reinforcement and 113 had confining reinforcement within the joint region. Twenty-eight specimens had the hooked bars placed outside the column core. Of these, 14 had no confining reinforcement and 14 had confining reinforcement within the joint region.

The following conclusions are based on the test results and analyses described in this study.

1. Tail kickout was only observed in conjunction with other modes of failure and was not, in any case, the only mode of failure.

2. The likelihood of tail kickout increases for hooked bars placed outside the column core, as compared to hooked bars placed inside the column core, as confining reinforcement within the joint region decreases, and as the size of the hooked bar increases.

3. The anchorage strength of hooked bars with a 90-degree bend angle is not affected by hook tail covers as low as 3/4 in. (19 mm) or tail kickout at failure.

AUTHOR BIOS

ACI member Samir Yasso is a Faculty Member at the University of Mosul, Mosul, Iraq. He received his BSc and MSc in civil engineering from the University of Mosul and his PhD degree in civil engineering from the University of Kansas, Lawrence, KS. He is a member of Joint ACI-ASCE Committee 408, Bond and Development of Steel Reinforcement.

ACI Honorary Member David Darwin is the Deane E. Ackers Distinguished Professor and Chair of the Department of Civil, Environmental, and Architectural Engineering at the University of Kansas and a Past President of ACI. He is a member of ACI Committees 222, Corrosion of Metals in Concrete; 224, Cracking; 318, Structural Concrete Building Code; ACI Subcommittees 318-B, Anchorage and Reinforcement, and 318-N, Sustainability; and Joint ACI-ASCE Committees 408, Bond and Development of Steel Reinforcement; 445, Shear and Torsion; and 446, Fracture Mechanics of Concrete.

ACI member Matthew O'Reilly is an Associate Professor of Civil, Environmental, and Architectural Engineering at the University of Kansas. He received his BS in mechanical engineering from the University of Rochester, Rochester, NY, and his MS and PhD in civil engineering from the University of Kansas. He is a member of ACI Committees 123, Research and Current Developments, and 222, Corrosion of Metals in Concrete; and Joint ACI-ASCE Committee 408, Bond and Development of Steel Reinforcement.

ACKNOWLEDGMENTS

Support for the study was provided by the Electric Power Research Institute (EPRI), Concrete Reinforcing Steel Institute Education and Research Foundation, University of Kansas Transportation Research Institute, Charles Pankow Foundation, Commercial Metals Company, Gerdau Corporation, Nucor Corporation, and MMFX Technologies Corporation. Additional materials were supplied by Dayton Superior, Midwest Concrete Materials, and W. R. Grace Construction. Thanks are due to K. Barry and M. Ruis, who provided project oversight for the Advanced Nuclear Technology Program of EPRI, and to N. Anderson, C. Kopczynski, M. Mota, J. Munshi, and C. Paulson who served as industry advisors

REFERENCES

ACI Committee 318, 2014, "Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)," American Concrete Institute, Farmington Hills, MI, 518 pp.

ACI Committee 318, 2019, "Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)," American Concrete Institute, Farmington Hills, MI, 623 pp.

Joint ACI-ASCE Committee 408, "Guide for Lap Splice and Development Length of High Relative Rib Area Reinf Bars in Tension (ACI 408.3R-09) and Commentary," American Concrete Institute, Farmington Hills, MI, 8 pp.

Ajaam, A.; Darwin, D.; and O'Reilly, M., 2017, "Anchorage Strength of Reinforcing Bars with Standard Hooks," *SM Report* No. 125, University of Kansas Center for Research, Lawrence, KS, 365 pp. Ajaam, A.; Yasso, S.; Darwin, D.; O'Reilly, M.; and Sperry, J., 2018, "Anchorage Strength of Closely-Spaced Hooked Bars," *ACI Structural Journal*, V. 115, No. 4, July-Aug., pp. 1143-1152. doi: 10.14359/51702065 ASTM A1035/A1035M-14, 2014, "Standard Specification for Deformed

ASTM A1035/A1035M-14, 2014, "Standard Specification for Deformed and Plain Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement," ASTM International, West Conshohocken, PA, 7 pp.

ASTM A615/A615M-15, 2015, "Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement," ASTM International, West Conshohocken, PA, 8 pp.

Draper, N. R., and Smith, H., 1981, *Applied Regression Analysis*, second edition, Wiley, New York, 709 pp.

Jirsa, J. O., and Marques, J. L. G., 1972, "A Study of Hooked Bar Anchorages in Beam-Column Joints," *Reinforced Concrete Research Council Project* 33, University of Texas at Austin Structures Research Laboratory, Austin, TX, 92 pp.

Marques, J. L. G., and Jirsa, J. O., 1975, "A Study of Hooked Bar Anchorages in Beam-Column Joints," *ACI Journal Proceedings*, V. 72, No. 5, May, pp. 198-209.

Minor, J., and Jirsa, J. O., 1975, "Behavior of Bent Bar Anchorages," *ACI Journal Proceedings*, V. 72, No. 4, Apr., pp. 141-149.

Peckover, J., and Darwin, D., 2013, "Anchorage of High-Strength Reinforcing Bars with Standard Hooks: Initial Tests," *SL Report* No. 13-1, University of Kansas Center for Research, Lawrence, KS, 47 pp.

Sperry, J.; Al-Yasso, S.; Searle, N.; DeRubeis, M.; Darwin, D.; O'Reilly, M.; Matamoros, A.; Feldman, L.; Lepage, A.; Lequesne, R.; and Ajaam, A., 2015a, "Anchorage of High-Strength Reinforcing Bars With Standard Hooks," *SM Report* No. 111, University of Kansas Center for Research, Lawrence, KS, 260 pp.

Sperry, J.; Darwin, D.; O'Reilly, M.; Lepage, A.; Lequesne, R.; Matamoros, A.; Feldman, L.; Yasso, S.; Searle, N.; DeRubeis, M.; and Ajaam, A., 2018, "Conventional and High-Strength Steel Hooked Bars: Detailing Effects," *ACI Structural Journal*, V. 115, No. 1, Jan.-Feb., pp. 247-257. doi: 10.14359/51700920

Sperry, J.; Darwin, D.; O'Reilly, M.; and Lequesne, R., 2015b, "Anchorage Strength of Conventional and High-Strenth Hooked Bars in Concrete," *SM Report* No. 115, University of Kansas Center for Research, Lawrence, KS, 281 pp.

Sperry, J.; Darwin, D.; O'Reilly, M.; Matamoros, A.; Feldman, L.; Lepage, A.; Lequesne, R.; and Yasso, S., 2017b, "Conventional and High-Strength Hooked Bars—Part 2: Data Analysis," *ACI Structural Journal*, V. 114, No. 1, Jan.-Feb., pp. 267-276. doi: 10.14359/51689457

Sperry, J.; Yasso, S.; Searle, N.; DeRubeis, M.; Darwin, D.; O'Reilly, M.; Matamoros, A.; Feldman, L.; Lepage, A.; and Lequesne, R., 2017a, "Conventional and High-Strength Hooked Bars—Part 1: Anchorage Tests," *ACI Structural Journal*, V. 114, No. 1, Jan.-Feb., pp. 255-266. doi: 10.14359/51689457

Yasso, S.; Darwin, D.; and O'Reilly, M., 2017, "Anchorage Strength of Standard Hooked Bars in Simulated Exterior Beam-Column Joints," *SM Report* No. 124, University of Kansas Center for Research, Lawrence, KS, 330 pp.

APPENDIX A: NOTATION AND COMPREHENSIVE DATA TABLES

A.1 Longitudinal Column Steel Layouts

Figure A1: Longitudinal column reinforcement-4 No. 5 bars. Transverse reinforcement not shown.

Figure A2: Longitudinal column reinforcement-4 No. 8 bars. Transverse reinforcement not shown.

Figure A3: Longitudinal column reinforcement-5 No. 8 bars. Transverse reinforcement not shown.

Figure A4: Longitudinal column reinforcement-6 No. 5 bars. Transverse reinforcement not shown.

Figure A5: Longitudinal column reinforcement-5 No. 5 bars + 1 No. 3 bar. Transverse reinforcement not shown.

Figure A6: Longitudinal column reinforcement-4 No. 8 bars + 2 No. 5 bars. Transverse reinforcement not shown.

Figure A7: Longitudinal column reinforcement-6 No. 8 bars. Transverse reinforcement not shown.

Figure A8: Longitudinal column reinforcement-4 No. 8 bars + 2 No. 11 bars. Transverse reinforcement not shown.

Figure A9: Longitudinal column reinforcement-8 No. 5 bars. Transverse reinforcement not shown.

Figure A10: Longitudinal column reinforcement-8 No. 8 bars (four bundles of two bars each). Transverse reinforcement not shown.

Figure A11: Longitudinal column reinforcement-8 No. 8 bars (distributed across two column faces). Transverse reinforcement not shown.

Figure A12: Longitudinal column reinforcement-8 No. 8 bars (distributed across four column faces). Transverse reinforcement not shown.

Figure A13: Longitudinal column reinforcement-4 No. 8 bars + 4 No. 11 bars. Transverse reinforcement not shown. Not included in current analysis.

Figure A14: Longitudinal column reinforcement-10 No. 8 bars. Transverse reinforcement not shown. Not included in current analysis.

Figure A15: Longitudinal column reinforcement-8 No. 8 bars + 2 No. 5 bars. Transverse reinforcement not shown.

Figure A16: Longitudinal column reinforcement-12 No. 8 bars. Transverse reinforcement not shown.

A.2 Notation

* For the vertical confining reinforcement, size of the ties in hook region is followed by 'vr', and its absence indicates that the horizontal confining reinforcement is provided.

- A_h Bar area of hook
- *A*_{tr} Total area of transverse steel inside hook region
- *As* Area of longitudinal steel in the column
- *A*_{cti} Total area of cross-ties inside the hook region
- *b* Column width
- *c*^b Clear cover measured from the center of the hook to the side of the column
- *ch* Clear spacing between hooked bars, inside-to-inside spacing
- c_{so} Clear cover measured from the side of the hook to the side of the column
- *c*so,avg Average clear cover of the hooked bars
- *c*_{th} Clear cover measured from the tail of the hook to the back of the column
- d_b Nominal bar diameter of the hooked bar
- *d*_{cto} Nominal bar diameter of cross-ties outside the hook region
- *d*_{tr} Nominal bar diameter of transverse reinforcement inside the hook region
- *ds* Nominal bar diameter of transverse reinforcing steel outside the hook region
- f_c' Specified concrete compressive strength
- f_{an} Measured average concrete compressive strength
- $f_{s,ACI}$ Stress in hook as calculated by Section 25.4.3.1 of ACI 318-14

Jsu, ind	Stress in hook at failure
fsu	Average peak stress in hooked bars at failure
f_{yt}	Nominal yield strength of transverse reinforcement
f_{ys}	Nominal yield strength of longitudinal reinforcing steel in the column
h_c	Width of bearing member flange
h_{cl}	Height measured from the center of the hook to the top of the bearing member flange
h_{cu}	Height measured from the center of the hook to the bottom of the upper compression
	member
ℓ_{eh}	Embedment length measured from the back of the hook to the front of the column
leh,avg	Average embedment length of hooked bars
n	Number of hooked bars confined by <i>N</i> legs
Ν	Number of legs of confining reinforcement in joint region
Ncti	Total number of cross-ties used as supplemental reinforcement inside the hook region
Ncto	Number of crossties used per layer as supplemental reinforcement outside the hook region
	and spaced at ss
N_h	Number of hooked bars loaded simultaneously
M	Number of stirrups/ties crossing the book
1 v tr	runder of startups des crossing the nook
T T	Average peak load on hooked bars
T_{c}	Average peak load on hooked bars Contribution of concrete to hooked bar anchorage capacity
T T_c T_{ind}	Average peak load on hooked bars Contribution of concrete to hooked bar anchorage capacity Peak load on the hooked bar at failure
T_{Tc} T_{ind} T_{h}	Average peak load on hooked bars Contribution of concrete to hooked bar anchorage capacity Peak load on the hooked bar at failure Hooked bar anchorage strength
T T Tc Tind Th Ts	Average peak load on hooked bars Contribution of concrete to hooked bar anchorage capacity Peak load on the hooked bar at failure Hooked bar anchorage strength Contribution of confining steel in joint region to hooked bar anchorage strength
T T_c T_{ind} T_h T_s T_{max}	Average peak load on hooked bars Contribution of concrete to hooked bar anchorage capacity Peak load on the hooked bar at failure Hooked bar anchorage strength Contribution of confining steel in joint region to hooked bar anchorage strength Maximum load on individual hooked bar
T T_c T_{ind} T_h T_s T_{max} T_{total}	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failure
T T_c T_i T_h T_s T_max T_total Rr	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failureRelative rib area
T T Tc Tind Th Ts Tmax Ttotal Rr Scti	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failureRelative rib areaCenter-to-center spacing of cross-ties in the hook region
T T Tc Tind Th Ts Tmax Ttotal Rr Scti Str	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failureRelative rib areaCenter-to-center spacing of cross-ties in the hook regionCenter-to-center spacing of transverse reinforcement in the hook region
T T Tc Tind Th Ts Tmax Ttotal Rr Scti Str Ss	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failureRelative rib areaCenter-to-center spacing of cross-ties in the hook regionCenter-to-center spacing of stirrups/ties outside the hook region
T T Tc Tind Th Ts Tmax Ttotal Rr Scti Str Ss α	Average peak load on hooked barsContribution of concrete to hooked bar anchorage capacityPeak load on the hooked bar at failureHooked bar anchorage strengthContribution of confining steel in joint region to hooked bar anchorage strengthMaximum load on individual hooked barSum of the loads on hooked bars at failureRelative rib areaCenter-to-center spacing of cross-ties in the hook regionCenter-to-center spacing of stirrups/ties outside the hook regionStudent's t-test significance

- ψ_e Epoxy coating factor as defined in ACI 318-14 Section 25.4.3.2
- ψ_c Factor for cover as defined in ACI 318-14 Section 25.4.3.2
- ψ_r Factor for transverse reinforcement in the hook region
- ψ_o Factor for hooked bar location
- ψ_m Hooked bar spacing factor

Failure types

- F Front Failure
- S Side Failure
- TK Tail Kickout
- FL Flexural Failure of column
- BY Yield of hooked bars

Specimen identification

(A@B) C-D-E-F#G-H-I-J-Kx(L)

- A Number of hooks in the specimen
- B Clear spacing between hooks in terms of bar diameter (A@B = blank, indicates standard 2-hook specimen)
- C ASTM in.-lb bar size
- D Nominal compressive strength of concrete
- E Angle of bend
- F Number of bars used as transverse reinforcement within the hook region
- G ASTM in.-lb bar size of transverse reinforcement

(if D#E = 0 = no transverse reinforcement)

- H Hooked bars placed inside (i) or outside (o) of longitudinal reinforcement
- I Nominal value of *c*_{so}
- J Nominal value of c_{th}
- K Nominal value of ℓ_{eh}

- x Replication in a series, blank (or a), b, c, etc.
- L Replication not in a series

	Specimen	Hook	Bend	Trans. Reinf.	Hook Bar	leh	leh,avg	f'e	Age	d _b
	-		Angle	Orient.	туре	in.	in.	psi	days	in.
1	5-5-90-0-0-1.5-2-5	A B	90°	Para	A615	5.0 5.0	5.0	4930	4	0.625
2	5-5-90-0-0-1.5-2-6.5	A B	90°	Para	A1035	6.5 5.9	6.2	5650	6	0.625
3	5-5-90-0-0-1.5-2-8	В	90°	Para	A1035	7.9	7.9	5650	6	0.625
4	5-5-90-0-0-2.5-2-5	A B	90°	Para	A615	4.8 4.8	4.8	4930	4	0.625
5	5-5-90-0-0-2.5-2-8	Α	90°	Para	A1035	9.0	9.0	5780	7	0.625
6	5-5-90-0-i-2.5-2-10	A B	90°	Para	A1035	9.4 9.4	9.4	5230	6	0.625
7	5-5-90-0-i-2.5-2-7	A B	90°	Para	A1035	6.9 7.0	6.9	5190	7	0.625
8	5-8-90-0-i-2.5-2-6	A B	90°	Para	A615	6.8 6.8	6.8	8450	14	0.625
9	5-8-90-0-i-2.5-2-6(1)	A B	90°	Para	A1035	6.1 6.5	6.3	9080	11	0.625
10	5-8-90-0-i-2.5-2-8	A B	90°	Para	A1035	8.0 7.5	7.8	8580	15	0.625
11	5-12-90-0-i-2.5-2-10	A B	90°	Para	A1035	10.0 11.0	10.5	10290	14	0.625
12	5-12-90-0-i-2.5-2-5	A B	90°	Para	A1035	5.1 4.8	4.9	11600	84	0.625
13	5-15-90-0-i-2.5-2-5.5	A B	90°	Para	A1035	6.1 5.8	5.9	15800	62	0.625
14	5-15-90-0-i-2.5-2-7.5	A B	90°	Para	A1035	7.3 7.3	7.3	15800	62	0.625
15	5-5-90-0-i-3.5-2-10	A B	90°	Para	A1035	10.5 10.4	10.4	5190	7	0.625
16	5-5-90-0-i-3.5-2-7	A B	90°	Para	A1035	7.5 7.6	7.6	5190	7	0.625
17	5-8-90-0-i-3.5-2-6	A B	90°	Para	A615	6.3 6.4	6.3	8580	15	0.625
18	5-8-90-0-i-3.5-2-6(1)	A B	90°	Para	A1035	6.5 6.6	6.6	9300	13	0.625
19	5-8-90-0-i-3.5-2-8	A B	90°	Para	A1035	8.6 8.5	8.6	8380	13	0.625
20	5-12-90-0-i-3.5-2-5	A B	90°	Para	A1035	5.5 5.4	5.4	10410	15	0.625

Table A.1 Data and test results for specimens with No. 5 hooked bars

	Hook	Rr	b in	h :	h _{cl}	<i>h</i> c	C _{so}	Cso,avg	C th	Ch	Nh	Axial Load	Long. Reinf.
			ın.	ın.	ın.	in.	ın.	ın.	1 n .	ın.		ĸīps	Layout
1	A B	0.077	11.3	7.0	5.25	8.375	1.5 1.8	1.6	2.0 2.0	6.8	2	80	A1
2	A B	0.073	11.0	8.6	5.25	8.375	1.5 1.6	1.6	2.0 2.8	6.6	2	80	A4
3	В	0.073	11.9	10.0	5.25	8.375	1.5	1.5	2.1	6.6	2	80	A1
4	A B	0.077	12.6	6.9	5.25	8.375	2.5 2.5	2.5	2.1 2.1	6.4	2	80	A1
5	А	0.073	12.1	11.2	5.25	8.375	2.6	2.6	1.5	6.6	2	80	A1
6	A B	0.073	13.1	12.3	5.25	8.375	2.8 2.6	2.7	2.9 2.9	6.4	2	30	A4
7	A B	0.073	13.0	9.6	5.25	8.375	2.5 2.5	2.5	2.8 2.6	6.8	2	30	A1
8	A B	0.073	13.0	8.0	5.25	8.375	2.8 2.6	2.7	1.3 1.3	6.4	2	80	A1
9	A B	0.073	13.3	8.8	5.25	8.375	2.5 2.5	2.5	2.6 2.3	7.0	2	30	A1
10	A B	0.073	13.1	10.0	5.25	8.375	2.5 2.8	2.6	2.0 2.5	6.6	2	80	A1
11	A B	0.073	12.8	12.5	5.25	8.375	2.4 2.5	2.4	2.5 1.5	6.6	2	30	A4
12	A B	0.073	13.0	7.3	5.25	8.375	2.6 2.6	2.6	2.1 2.5	6.5	2	30	A1
13	A B	0.073	12.6	7.7	5.25	8.375	2.4 2.4	2.4	1.6 1.9	6.6	2	30	A1
14	A B	0.073	12.9	9.8	5.25	8.375	2.5 2.5	2.5	2.6 2.6	6.6	2	30	A2
15	A B	0.073	14.8	12.3	5.25	8.375	3.5 3.5	3.5	1.8 1.9	6.5	2	30	A4
16	A B	0.073	15.1	8.8	5.25	8.375	3.4 3.5	3.4	1.3 1.1	7.0	2	30	A1
17	A B	0.073	15.0	8.0	5.38	8.375	3.6 3.5	3.6	1.8 1.6	6.6	2	80	A1
18	A B	0.073	15.6	8.6	5.25	8.375	3.8 3.8	3.8	2.1 1.9	6.9	2	30	A1
19	A B	0.060	15.5	10.0	5.25	8.375	3.6 3.5	3.6	1.4 1.5	7.1	2	80	A1
20	A B	0.073	15.5	7.2	5.25	8.375	3.6 3.6	3.6	1.7 1.8	7.0	2	30	A1

Table A.2 Cont. Data and test results for specimens with No. 5 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		Tmax	Tind	Ttotal	T	$T_{\rm h}$		fsu,max	fsu	fs,ACI	Joint shear at
	Hook	lb	lb	lb	lb	lb	T/Th	psi	psi	psi	failure/ $\sqrt{f_{cm}}$
1	A B	14139 19575	14029 14108	28137	14069	16701	0.84	45609 63147	45382	40122	3.6
2	A B	20758 18187	17440 18187	35627	17813	21824	0.82	66962 58667	57463	53261	3.5
3	В	23455	23455	23455	23455	28121	0.83	75663	75663	67650	1.8
4	A B	19559 23982	19559 19007	38566	19283	15817	1.22	63094 77362	62204	38116	4.4
5	Α	30340	30340	30340	30340	32611	0.93	97870	97870	78198	2.1
6	A B	37404 32864	34303 32864	67166	33583	33080	1.02	120656 106012	108333	77484	4.1
7	A B	26607 26095	26607 25922	52529	26265	23988	1.09	85831 84176	84724	57119	4.1
8	A B	27578 32135	27102 32038	59140	29570	26839	1.10	88961 103663	95387	70913	4.3
9	A B	21741 24995	21741 23109	44849	22425	25525	0.88	70131 80630	72338	68744	2.8
10	A B	31878 35934	31469 31878	63347	31673	31209	1.01	102831 115915	102172	82042	3.6
11	A B	40823 42491	40823 42491	83314	41657	45391	0.92	131688 137066	134377	121728	3.6
12	A B	19389 23171	19389 19051	38441	19220	21121	0.91	62546 74745	62001	60775	2.6
13	A B	36163 32373	32648 32373	65021	32511	28089	1.16	116656 104430	104873	85295	3.7
14	A B	42470 41977	42464 41977	84441	42221	34712	1.22	137001 135410	136196	104150	3.7
15	A B	43228 41140	43228 40626	83855	41927	36985	1.13	139446 132710	135250	85935	4.5
16	A B	27197 25884	27197 25836	53033	26516	26284	1.01	87732 83498	85537	62265	3.9
17	A B	25129 29054	25129 25822	50950	25475	25110	1.01	81060 93723	82178	66825	3.2
18	A B	24440 27541	24440 24643	49083	24541	26783	0.92	78838 88842	79166	72327	2.7
19	A B	39109 34311	31179 34311	65490	32745	34452	0.95	126159 110679	105629	89581	3.2
20	A B	22045 23158	22040 22201	44241	22121	22672	0.98	71114 74702	71357	63404	2.7

Table A.3 Cont. Data and test results for specimens with No. 5 hooked bars

	Hook	Slip at Failure	Failure	$f_{ m yt}$	$d_{ m tr}$	A _{tr,l}	N _{tr}	Str	Acti	Ncti	S _{cti}	ds	S _S	d _{cto}	Ncto	A_s	f_{ys}
	noon	in.	Туре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
1	A B	-	F/S F/S	60	-	-	-	-	0.88	41	2.5	0.375	2.50	-	-	1.27	60
2	A B	-	F F/S	60	-	-	-	-	0.88	41	2.5	0.375	2.50	-	-	1.89	60
3	В	-	S	60	-	-	-	-	0.88	4 ¹	2.5	0.375	2.50	-	-	1.27	60
4	A B	-	F/S F/S	60	-	-	-	-	0.88	41	2.5	0.375	2.50	-	-	1.27	60
5	А	-	S	60	-	-	-	-	0.88	41	2.5	0.375	2.50	-	-	1.27	60
6	A B	-	F/S F/S	60	-	-	-	-	0.33	3	3.0	0.375	3.00	-	-	1.89	60
7	A B	- 0.192	F/S F/S	60	-	-	-	-	0.80	4	2.5	0.500	3.50	-	-	1.27	60
8	A B	-	F/S S/F	60	-	-	-	-	0.80	4	4.0	0.500	4.00	-	-	1.27	60
9	A B	0.296 .330(.030)	F F	60	-	-	-	-	0.66	6	3.0	0.500	3.00	-	-	1.27	60
10	A B	-	S/F S/F	60	-	-	-	-	0.80	4	4.0	0.500	4.00	-	-	1.27	60
11	A B	0.191	S F/S/TK	60	-	-	-	-	0.11	1	7.0	0.375	5.00	-	-	1.89	60
12	A B	-	F/S F	60	-	-	-	-	0.66	6	2.5	0.500	3.00	-	-	1.27	60
13	A B	-	F F	60	-	-	-	-	-	-	-	0.375	2.50	-	-	1.27	60
14	A B	-	F *	60	-	-	-	-	-	-	-	0.375	3.50	-	-	3.16	60
15	A B	-	S/F S/F	60	-	-	-	-	0.33	3	3.0	0.375	3.00	-	-	1.89	60
16	A B	-	S F/S	60	-	-	-	-	0.80	4	2.5	0.375	3.50	-	-	1.27	60
17	A B	-	F/S F/S	60	-	-	-	-	0.80	4	4.0	0.500	4.00	-	-	1.27	60
18	A B	0.152 .178(.150)	F/S F/S	60	-	-	-	-	0.66	6	3.0	0.500	3.00	-	-	1.27	60
19	A B	-	F/S S	60	-	-	-	-	0.80	4	4.0	0.500	4.00	-	-	1.27	60
20	A B	-	F F	60	-	-	-	-	0.66	6	2.5	0.500	3.00	-	-	1.27	60

Table A.4 Cont. Data and test results for specimens with No. 5 hooked bars

¹Specimen had full stirrups around the longitudinal bars in the hook region but not around the hooked bars *Test terminated prior to failure of second hooked bar

	Specimen	Hook	Bend	Trans. Reinf.	Hook Bar	leh	leh,avg	f'^{c}	Age	$d_{ m b}$
	speemen	HOOK	Angle	Orient.	Туре	in.	in.	psi	days	in.
21	5-5-90-1#3-i-2.5-2-8	A B	90°	Para	A1035	8.0 7.6	7.8	5310	6	0.625
22	5-5-90-1#3-i-2.5-2-6	A B	90°	Para	A615	4.8 5.5	5.1	5800	9	0.625
23	5-8-90-1#3-i-2.5-2-6	A B	90°	Para	A615	6.0 6.3	6.1	8450	14	0.625
24	5-8-90-1#3-i-2.5-2-6(1)	A B	90°	Para	A1035	6.1 5.6	5.9	9300	13	0.625
25	5-8-90-1#3-i-3.5-2-6	A B	90°	Para	A1035	6.0 6.0	6.0	8710	16	0.625
26	5-8-90-1#3-i-3.5-2-6(1)	A B	90°	Para	A1035	6.3 6.3	6.3	9190	12	0.625
27	5-5-90-1#4-i-2.5-2-8	A B	90°	Para	A1035	7.4 7.8	7.6	5310	6	0.625
28	5-5-90-1#4-i-2.5-2-6	A B	90°	Para	A615	5.3 5.8	5.5	5860	8	0.625
29	5-8-90-1#4-i-2.5-2-6	A B	90°	Para	A1035	5.9 6.0	6.0	9300	13	0.625
30	5-8-90-1#4-i-3.5-2-6	A B	90°	Para	A1035	6.0 7.0	6.5	9190	12	0.625
31	5-5-90-2#3-i-2.5-2-8	A B	90°	Para	A1035	8.0 7.5	7.8	5860	8	0.625
32	5-5-90-2#3-i-2.5-2-6	A B	90°	Para	A615	6.0 5.8	5.9	5800	9	0.625
33	5-8-90-2#3-i-2.5-2-6	A B	90°	Para	A1035	6.0 6.0	6.0	8580	15	0.625
34	5-8-90-2#3-i-2.5-2-8	A B	90°	Para	A1035	8.3 8.5	8.4	8380	13	0.625
35	5-12-90-2#3-i-2.5-2-5	A B	90°	Para	A1035	5.8 5.8	5.8	11090	83	0.625
36	5-15-90-2#3-i-2.5-2-6	A B	90°	Para	A1035	6.3 6.5	6.4	15800	61	0.625
37	5-15-90-2#3-i-2.5-2-4	A B	90°	Para	A1035	3.5 4.0	3.8	15800	61	0.625
38	5-5-90-2#3-i-3.5-2-6	A B	90°	Para	A1035	6.0 5.8	5.9	5230	6	0.625
39	5-5-90-2#3-i-3.5-2-8	A B	90°	Para	A1035	7.9 7.5	7.7	5190	7	0.625
40	5-8-90-2#3-i-3.5-2-6	A B	90°	Para	A1035	6.5 6.0	6.3	8580	15	0.625
41	5-8-90-2#3-i-3.5-2-8	A B	90°	Para	A1035	7.1 7.0	7.1	8710	16	0.625
42	5-12-90-2#3-i-3.5-2-5	A B	90°	Para	A1035	5.6 5.3	5.4	10410	15	0.625
43	5-8-90-4#3-i-2.5-2-8	A B	90°	Para	A1035	7.9 7.5	7.7	8380	13	0.625
44	5-8-90-4#3-i-3.5-2-8	A B	90°	Para	A1035	8.6 8.3	8.4	8380	13	0.625

Table A.5 Cont. Data and test results for specimens with No. 5 hooked bars

	Hook	Rr	b	h	h _{cl}	h _c	C so	Cso,avg	Cth	Ch	Nh	Axial Load	Long. Reinf.
	HOOK		in.	in.	in.	in.	in.	in.	in.	in.		kips	Layout ^o
21	A B	0.073	13.1	10.4	5.25	8.375	2.5 2.5	2.5	2.4 2.8	6.9	2	80	A1
22	A B	0.060	13.1	8.0	5.25	8.375	2.5 2.5	2.5	3.3 2.5	6.9	2	80	A1
23	A B	0.060	12.9	8.0	5.25	8.375	2.5 2.5	2.5	2.0 1.8	6.6	2	80	A1
24	A B	0.073	13.1	8.3	5.25	8.375	2.6 2.8	2.7	2.1 2.6	6.5	2	30	A1
25	A B	0.060	15.3	8.0	5.25	8.375	3.6 3.6	3.6	2.0 2.0	6.8	2	80	A1
26	A B	0.073	15.3	8.6	5.25	8.375	3.8 3.5	3.6	2.4 2.4	6.8	2	30	A1
27	A B	0.073	13.1	10.1	9.25	8.375	2.5 2.5	2.5	2.8 2.4	6.9	2	80	A1
28	A B	0.060	12.9	8.0	5.25	8.375	2.5 2.5	2.5	2.8 2.3	6.6	2	80	A1
29	A B	0.073	12.9	8.8	5.25	8.375	2.5 2.8	2.6	2.8 2.8	6.4	2	30	A1
30	A B	0.073	15.1	9.0	5.25	8.375	3.6 3.5	3.6	3.0 2.0	6.8	2	30	A1
31	A B	0.073	12.9	10.0	5.38	8.375	2.5 2.5	2.5	2.0 2.5	6.6	2	80	A1
32	A B	0.060	13.1	8.5	5.25	8.375	2.6 2.6	2.6	2.5 2.8	6.6	2	80	A1
33	A B	0.073	13.0	8.0	5.25	8.375	2.8 2.9	2.8	2.0 2.0	6.1	2	80	A1
34	A B	0.073	12.9	10.0	5.25	8.375	2.6 2.5	2.6	1.8 1.5	6.5	2	80	A5
35	A B	0.073	13.0	8.8	5.25	8.375	2.5 2.8	2.6	3.0 3.0	6.5	2	30	A1
36	A B	0.073	12.6	8.2	5.25	8.375	2.4 2.4	2.4	1.9 1.7	6.6	2	30	A2
37	A B	0.073	13.0	6.1	5.25	8.375	2.5 2.5	2.5	2.6 2.1	6.8	2	30	A9
38	A B	0.073	14.5	8.3	5.25	8.375	3.4 3.4	3.4	2.3 2.5	6.5	2	30	A1
39	A B	0.073	14.9	10.3	5.25	8.375	3.4 3.5	3.4	2.3 2.8	6.8	2	30	A1
40	A B	0.073	14.9	8.0	5.25	8.375	3.5 3.8	3.6	1.5 2.0	6.4	2	80	A1
41	A B	0.060	14.9	10.0	5.25	8.375	3.5 3.5	3.5	2.9 3.0	6.6	2	80	A5
42	A B	0.073	15.1	7.4	5.25	8.375	3.8 3.5	3.6	1.8 2.2	6.6	2	30	A1
43	A B	0.060	12.6	10.0	5.25	8.375	2.5 2.5	2.5	2.1 2.5	6.4	2	80	A5
44	A B	$0.060 \\ 0.060$	15.1	10.0	5.25 5.25	8.375 8.375	3.5 3.5	3.5 3.5	1.4 1.8	6.9 6.9	2 2	80	A5

Table A.6 Cont. Data and test results for specimens with No. 5 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		Table	A./ COI	. Data	and test	l Tesults .	tor speen	nens witt	1110.51	liookeu oa	13
		T _{max}	$T_{ m ind}$	T _{total}	Т	Th	T (T	fsu,max	fsu	$f_{su,avg}$	Joint shear at
	Hook	lb	lb	lb	lb	lb	<i>T/T</i> h	psi	psi	psi	failure/ $\sqrt{f_{cm}}$
21	A B	32860 37440	32628 33645	66273	33136	31349	1.06	106001 120776	106892	65062	4.7
22	A B	20038 29285	19968 19863	39830	19915	21933	0.91	64639 94469	64242	44607	3.5
23	A B	26203 27858	26172 26974	53146	26573	28174	0.94	84524 89865	85719	64347	3.9
24	A B	29328 25430	29328 25430	54758	27379	27780	0.99	94606 82032	88319	64750	3.7
25	A B	41369 31173	28996 31173	60169	30084	27859	1.08	133448 100558	97046	63996	3.7
26	A B	28967 26270	25617 26194	51811	25905	29307	0.88	93441 84741	83565	68475	2.9
27	A B	35739 27537	27537 27537	55074	27537	33925	0.81	115288 88829	88829	62980	4.0
28	A B	21633 26769	21535 21379	42914	21457	26892	0.80	69782 86352	69217	48118	3.8
29	A B	23854 27932	23854 24731	48585	24292	31688	0.77	76947 90103	78363	65783	3.1
30	A B	25266 25221	25261 25221	50482	25241	33887	0.74	81504 81359	81423	71214	2.7
31	A B	37932 38949	37807 36500	74307	37154	31904	1.16	122360 125642	119850	67802	5.3
32	A B	31846 29191	29697 29191	58888	29444	24732	1.19	102730 94164	94980	51134	4.8
33	A B	33454 30874	30402 30874	61277	30638	27755	1.10	107916 99595	98833	63517	4.4
34	A B	39822 40545	39791 40545	80336	40168	37614	1.07	128457 130789	129574	87619	4.8
35	A B	25201 29393	25120 23576	48696	24348	28463	0.86	81295 94816	78542	69203	2.8
36	A B	42381 42895	42381 42895	85276	42638	34250	1.24	136714 138371	137542	91580	4.6
37	A B	18652 21256	18652 18683	37334	18667	21220	0.88	60167 68569	60217	53871	2.6
38	A B	21341 21262	21146 21040	42186	21093	24118	0.87	68842 68586	68042	48557	3.4
39	A B	43675 45654	43675 45654	89329	44665	30822	1.45	140887 147271	144079	63551	5.7
40	A B	29930 30139	29930 30139	60069	30035	28807	1.04	96549 97223	96886	66163	3.8
41	A B	38022 28596	28716 28596	57312	28656	32368	0.89	122652 92246	92439	75329	2.9
42	A B	27860 28869	27860 28869	56728	28364	26634	1.06	89871 93124	91497	63404	3.4
43	A B	33367 27016	25867 26955	52823	26411	38991	0.68	107636 87150	85198	80426	3.2
44	A B	42471 39278	37810 39150	76960	38480 42600	42178 42601	0.91	137003 126704	124130	88273	3.9

Table A.7 Cont. Data and test results for specimens with No. 5 hooked bars

	Hook	Slip at Failure in	Failure Type	fyt ksi	d _{tr} in	$A_{tr,l}$ in ²	N _{tr}	s _{tr} in	A _{cti} in ²	N _{cti}	s _{cti} in	d _s in	s _s in	d _{cto}	Ncto	A_s in ²	f_{ys} ksi
21	A	-	F S/F	60	0.375	0.11	1	5.00	0.44	4	6.0	0.375	4.00	-	-	1.27	60
22	A B	-	S/F	60	0.375	0.11	1	5.00	0.44	4	6.0	0.375	4.00	-	-	1.27	60
23	A B	-	F	60	0.375	0.11	1	5.00	0.80	4	6.0	0.500	4.00	-	-	1.27	60
24	A B	-	F/S F/S	60	0.375	0.11	1	6.00	0.66	6	3.0	0.500	3.00	-	-	1.27	60
25	A B	-	F/S F/S	60	0.375	0.11	1	5.00	0.80	4	6.0	0.500	4.00	-	-	1.27	60
26	A B	0.239 0.158	F/S F/S	60	0.375	0.11	1	6.00	0.66	6	3.0	0.500	3.00	-	-	1.27	60
27	A B	-	F/S S	60	0.5	0.20	1	5.00	0.44	4	6.0	0.375	4.00	-	-	1.27	60
28	A B	-	S S	60	0.5	0.20	1	5.00	0.44	4	6.0	0.375	4.00	-	-	1.27	60
29	A B	0.25 0.22	F F/S	60	0.5	0.20	1	6.00	0.44	4	6.0	0.500	3.00	-	-	1.27	60
30	A B		F/S F/S	60	0.5	0.20	1	6.00	0.44	4	6.0	0.500	3.00	-	-	1.27	60
31	A B		S/F S/F	60	0.375	0.11	2	4.00	-	-	-	0.375	4.00	-	-	1.27	60
32	A B	-	F/S F/S	60	0.375	0.11	2	4.00	-	-	-	0.375	4.00	-	-	1.27	60
33	A B	-	F/S F/S	60	0.375	0.11	2	4.00	-	-	-	0.500	4.00	-	-	1.27	60
34	A B	-	F/S F/S	60	0.375	0.11	2	4.00	-	-	-	0.500	4.00	-	-	1.67	60
35	A B	-	F/S F	60	0.375	0.11	2	3.30	0.33	3	3.3	0.500	3.00	-	-	1.27	60
36	A B	-	F F	60	0.375	0.11	2	3.00	-	-	-	0.375	2.75	-	-	3.16	60
37	A B	-	F F	60	0.375	0.11	2	3.00	-	-	-	0.375	1.75	-	-	2.51	60
38	A B	0.183	S/F S/F	60	0.375	0.11	2	3.50	0.11	1	3.5	0.375	3.50	-	-	1.27	60
39	A B	-	F F	60	0.375	0.11	2	3.50	-	-	-	0.375	4.00	-	-	1.27	60
40	A B	-	F F/S	60	0.375	0.11	2	4.00	-	-	-	0.500	4.00	-	-	1.27	60
41	A B	-	F F	60	0.375	0.11	2	4.00	-	-	-	0.500	4.00	-	-	1.67	60
42	A B	- 0.349	F F	60	0.375	0.11	2	3.33	0.33	3	3.3	0.500	3.00	-	-	1.27	60
43	A B	-	F/S F/S	60	0.375	0.11	4	2.00	-	-	-	0.500	4.00	-	-	1.67	60
44	A B	-	F S/F	60	0.375	0.11	4	2.00	-	-	-	0.50	4.00	-	-	1.67	60

Table A.8 Cont. Data and test results for specimens with No. 5 hooked bars

			1						
Specimen	Hook	Bend	Trans. Reinf.	Hook Bar	leh	leh,avg	f'c	Age	d_{b}
		Angle	Orient.	Туре	in.	in.	psi	days	in.
5-5-90-5#3-0-1.5-2-5	В	90°	Para	A615	5.0	5.0	5205	5	0.625
5-5-90-5#3-0-1.5-2-8	А	90°	Para	A1035	8.0	7.9	5650	6	0.625
	В				7.8				
5-5-90-5#3-0-1 5-2-6 5	Α	00°	Dara	A 1035	6.5	6.5	5780	7	0.625
5-5-90-5#5-0-1.5-2-0.5	В	70	1 414	A1055	6.5	0.5	5780	/	0.025
5 5 90 5#3 0 2 5 2 5	Α	000	Dara	4615	5.2	5.2	4002	4	0.625
3-3-90-3#3-0-2.3-2-3	В	90	Fala	A015	5.1	5.2	4903	4	0.025
5-5-90-5#3-0-2.5-2-8	А	90°	Para	A1035	7.5	7.5	5650	6	0.625
5 5 00 5#2 : 2 5 2 7	А	000	Dawa	A 1025	5.6	()	5220	(0.(25
5-5-90-5#5-1-2.5-2-7	В	90-	Para	A1055	7.0	0.5	5250	0	0.625
5 12 00 5//2 : 2 5 2 5	А	000	P	4 1025	5.1	5.4	10410	1.5	0.625
5-12-90-5#5-1-2.5-2-5	В	90-	Para	A1055	5.8	5.4	10410	15	0.625
5 15 00 5/2 : 2 5 2 4	А	000	P	4 1025	3.8	4.0	15000	(2)	0.625
5-15-90-5#3-1-2.5-2-4	В	90°	Para	A1035	4.1	4.0	15800	62	0.625
5 15 00 5/2 : 0 5 0 5	А	0.00	P	4 1025	5.0	7 1	15000	(2)	0.625
5-15-90-5#3-1-2.5-2-5	В	90°	Para	A1035	5.1	5.1	15800	62	0.625
	А				7.5			_	0 (0 -
5-5-90-5#3-1-3.5-2-7	В	90°	Para	A1035	6.8	7.1	5190	1	0.625
	А				5.3				
5-12-90-5#3-i-3.5-2-5	B	90°	Para	A1035	4.8	5.0	11090	83	0.625
	Specimen 5-5-90-5#3-o-1.5-2-5 5-5-90-5#3-o-1.5-2-8 5-5-90-5#3-o-1.5-2-6.5 5-5-90-5#3-o-2.5-2-5 5-5-90-5#3-o-2.5-2-5 5-5-90-5#3-i-2.5-2-7 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-2.5-2-5 5-15-90-5#3-i-3.5-2-7 5-12-90-5#3-i-3.5-2-7	SpecimenHook $5-5-90-5\#3-0-1.5-2-5$ B $5-5-90-5\#3-0-1.5-2-8$ A B $5-5-90-5\#3-0-1.5-2-6.5$ B $5-5-90-5\#3-0-2.5-2-5$ A $5-5-90-5\#3-0-2.5-2-5$ A $5-5-90-5\#3-0-2.5-2-8$ A $5-5-90-5\#3-0-2.5-2-8$ A $5-5-90-5\#3-0-2.5-2-7$ B $5-12-90-5\#3-0-2.5-2-7$ B $5-12-90-5\#3-0-2.5-2-7$ A $5-15-90-5\#3-0-2.5-2-7$ B $5-15-90-5\#3-0-2.5-2-7$ B $5-15-90-5\#3-0-2.5-2-5$ A $5-15-90-5\#3-0-2.5-2-7$ A $5-15-90-5\#3-0-2.5-2-7$ A $5-15-90-5\#3-0-2.5-2-7$ A $5-15-90-5\#3-0-2.5-2-7$ A $5-15-90-5\#3-0-2.5-2-7$ A $5-12-90-5\#3-0-2.5-2-7$ A $5-12-90-5\#3-0-3.5-2-7$ A $5-12-90-5\#3-0-3.5-2-7$ A $5-12-90-5\#3-0-3.5-2-5$ A $5-12-90-5\#3-0-3.5-2-5$ A $5-12-90-5\#3-0-3.5-2-5$ A $5-12-90-5\#3-0-3.5-2-5$ A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SpecimenHookBend AngleTrans. Reinf. Orient. $5-5-90-5\#3-o-1.5-2-5$ B 90° Para $5-5-90-5\#3-o-1.5-2-8$ A B 90° Para $5-5-90-5\#3-o-1.5-2-6.5$ A B 90° Para $5-5-90-5\#3-o-1.5-2-6.5$ A B 90° Para $5-5-90-5\#3-o-2.5-2-5$ A B 90° Para $5-5-90-5\#3-o-2.5-2-5$ A B 90° Para $5-5-90-5\#3-o-2.5-2-8$ A B 90° Para $5-5-90-5\#3-i-2.5-2-7$ A B 90° Para $5-12-90-5\#3-i-2.5-2-7$ A B 90° Para $5-15-90-5\#3-i-2.5-2-5$ A B 90° Para $5-15-90-5\#3-i-2.5-2-5$ A B 90° Para $5-15-90-5\#3-i-2.5-2-7$ A B 90° Para $5-15-90-5\#3-i-2.5-2-7$ A B 90° Para $5-12-90-5\#3-i-3.5-2-7$ A B 90° Para $5-12-90-5\#3-i-3.5-2-7$ A B 90° Para $5-12-90-5\#3-i-3.5-2-5$ A B 90° Para	SpecimenHookBend AngleTrans. Reinf. Orient.Hook Bar Type $5-5-90-5\#3-o-1.5-2-5$ B 90° ParaA615 $5-5-90-5\#3-o-1.5-2-8$ A B 90° ParaA1035 $5-5-90-5\#3-o-1.5-2-6.5$ A B 90° ParaA1035 $5-5-90-5\#3-o-1.5-2-6.5$ A B 90° ParaA1035 $5-5-90-5\#3-o-2.5-2-5$ A B 90° ParaA615 $5-5-90-5\#3-o-2.5-2-8$ A B 90° ParaA1035 $5-5-90-5\#3-i-2.5-2-7$ A B 90° ParaA1035 $5-12-90-5\#3-i-2.5-2-7$ A B 90° ParaA1035 $5-15-90-5\#3-i-2.5-2-7$ A B 90° ParaA1035 $5-5-90-5\#3-i-3.5-2-7$ A B 90° ParaA1035 $5-12-90-5\#3-i-3.5-2-7$ A B 90° ParaA1035 $5-12-90-5\#3-i-3.5-2-7$ A B 90° ParaA1035 $5-12-90-5\#3-i-3.5-2-5$ A B 90° ParaA1035	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SpecimenHookBend AngleTrans. Reinf. Orient.Hook Bar Type ℓ_{eh} $\ell_{eh,avg}$ in.5-5-90-5#3-o-1.5-2-5B90°ParaA6155.05.05-5-90-5#3-o-1.5-2-8A B90°ParaA10358.0 7.87.95-5-90-5#3-o-1.5-2-6.5A B90°ParaA10356.5 6.56.55-5-90-5#3-o-1.5-2-6.5A B90°ParaA10355.2 5.15.25-5-90-5#3-o-2.5-2-5A B90°ParaA10357.57.55-5-90-5#3-o-2.5-2-8A B90°ParaA10355.6 7.06.35-5-90-5#3-i-2.5-2-7A B90°ParaA10355.6 5.86.35-12-90-5#3-i-2.5-2-7A B90°ParaA10355.1 5.85.45-15-90-5#3-i-2.5-2-7A B90°ParaA10355.1 5.85.45-15-90-5#3-i-2.5-2-7A B90°ParaA10355.1 5.85.45-15-90-5#3-i-2.5-2-7A B90°ParaA10355.0 5.15.15-5-90-5#3-i-2.5-2-7A B90°ParaA10355.0 5.15.15-5-90-5#3-i-2.5-2-7A B90°ParaA10355.0 5.15.15-5-90-5#3-i-3.5-2-7A B90°ParaA10355.0 5.15.15-12-90-5#3-i-3.5-2-7A B90°ParaA10355.3 6.87.1	SpecimenHook AngleBend AngleTrans. Reinf. Orient.Hook Bar Type l_{eh} $l_{eh,avg}$ f'_{e} in. f'_{e} in.5-5-90-5#3-o-1.5-2-5B90°ParaA6155.05.052055-5-90-5#3-o-1.5-2-8A B90°ParaA1035 8.0 7.87.956505-5-90-5#3-o-1.5-2-6.5A B90°ParaA1035 6.5 6.5 6.5 57805-5-90-5#3-o-1.5-2-6.5A B90°ParaA1035 5.2 5.1 5.2 49035-5-90-5#3-o-2.5-2-5A B90°ParaA615 5.2 5.1 5.2 5.249035-5-90-5#3-o-2.5-2-8A B90°ParaA1035 7.5 7.5 5650 5-5-90-5#3-i-2.5-2.7A B90°ParaA1035 5.6 5.6 6.3 5230 $5-12-90-5#3-i-2.5-2.7$ A B90°ParaA1035 5.1 5.8 5.4 10410 $5-15-90-5#3-i-2.5-2.6$ A B90°ParaA1035 5.1 5.8 5.4 10410 $5-15-90-5#3-i-2.5-2.7$ A B90°ParaA1035 5.1 5.1 15800 $5-15-90-5#3-i-2.5-2.6$ A B90°ParaA1035 5.1 5.1 15800 $5-15-90-5#3-i-2.5-2.5$ A B90°ParaA1035 5.0 5.1 5.1 15800 $5-15-90-5#3-i-3.5-2.7$ A B90°ParaA1035 5.0 5.1 5.1 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table A.9 Cont. Data and test results for specimens with No. 5 hooked bars

Table A.10 Cont. Data and test results for specimens with No. 5 hooked bars

	Hook	$R_{\rm r}$	b	h	h _{cl}	hc	C so	C so,avg	C th	Ch	$N_{\rm h}$	Axial Load	Long. Reinf.
	HOOK		in.	in.	in.	in.	in.	in.	in.	in.		kips	Layout ^o
45	В	0.077	10.8	7.1	5.25	8.375	1.5	1.5	2.0	6.5	2	80	A1
46	A B	0.077	10.7	10.3	5.25	8.375	1.6 1.5	1.5	2.3 2.6	6.4	2	80	A1
47	A B	0.073	10.9	8.5	5.25	8.375	1.6 1.6	1.6	2.0 2.0	6.5	2	80	A4
48	A B	0.077	13.1	7.0	5.38	8.375	2.6 2.6	2.6	1.9 1.9	6.6	2	80	A1
49	Α	0.077	13.1	10.4	5.25	8.375	2.6	2.6	2.1	6.5	2	80	A1
50	A B	0.073	13.3	9.3	5.25	8.375	2.8 2.8	2.8	3.6 2.3	6.5	2	30	A1
51	A B	0.073	13.0	7.3	5.25	8.375	2.6 2.6	2.6	2.1 1.5	6.5	2	30	A1
52	A B	0.073	12.8	6.0	5.25	8.375	2.4 2.5	2.4	2.2 1.9	6.6	2	30	A9
53	A B	0.073	12.8	7.1	5.25	8.375	2.4 2.3	2.4	2.1 1.9	6.8	2	30	A2
54	A B	0.073	15.1	9.5	5.25	8.375	3.4 3.5	3.4	2.0 2.8	7.0	2	30	A1
55	A B	0.073	14.4	7.0	5.25	8.375	3.3 3.3	3.3	2.5 1.5	6.6	2	30	A1

° Longitudinal column configurations shown in Appendix A, Figures A1 - A16

		I able I		III Dun	i una ic	bt rebuit			1011 1 10.	noonea	Juis
		T _{max}	Tind	T total	Т	$T_{ m h}$		fsu,max	fsu	$f_{su,avg}$	Joint shear at
	Hook	lb	lb	lb	lb	lb	<i>T/T</i> h	psi	psi	psi	failure/ $\sqrt{f_{cm}}$
45	В	22060	22060	22060	22060	25225	0.74	71000	71000	51500	2.8
46	Α	25173	25173	50221	25110	40815	0.62	81202	81002	84562	4.2
10	В	30446	25048	50221	23110	10015	0.02	98211	01002	01502	1.2
47	А	26229	22736	13122	21711	35701	0.61	84610	70035	70506	13
ч/	В	20940	20686	73722	21/11	55771	0.01	67550	10055	70570	ч.5
10	Α	22279	22230	45059	22520	20021	0.75	71868	72675	51570	4.0
40	В	29466	22829	45058	22329	29921	0.75	95050	12015	51578	4.9
49	Α	28429	28429	28429	28429	39398	0.72	91706	91706	80536	1.9
50	Α	32080	32080	63303	31606	34446	0.92	103484	102246	65216	5.0
50	В	31340	31313	03373	51070	00	0.92	101095	102240	05210	5.0
51	Α	33923	33923	68830	34420	35366	0.97	109428	111031	70255	5.0
51	В	34916	34916	00037	57720	55500	0.97	112634	111051	17255	5.0
52	Α	31312	31312	62627	21219	21021	1.01	101006	101027	71266	15
52	В	31325	31325	02037	51518	51021	1.01	101048	101027	/1200	4.5
52	Α	38574	38574	79212	20156	26416	1.08	124434	126200	00007	18
55	В	46165	39737	/0312	39130	30410	1.00	148921	120309	90907	4.0
54	А	44301	36844	72050	36025	37360	0.96	142906	116210	73328	4.0
54	В	35206	35206	72030	30023	37309	0.90	113568	110210	75528	4.9
55	Α	31472	31396	60882	30441	33877	0.90	101522	08106	75221	4.0
55	В	31302	29485	00002	50441	55822	0.90	100973	20190	13221	4.0

Table A.11 Cont. Data and test results for specimens with No. 5 hooked bars

Table A.12 Cont. Data and test results for specimens with No. 5 hooked bars

	Hook	Slip at Failure	Failure	$f_{ m yt}$	$d_{ m tr}$	$A_{tr,l}$	$N_{ m tr}$	Str	Acti	Ncti	Scti	$d_{\rm s}$	s _s	dcto	Ncto	A_s	f_{ys}
		in.	гуре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
45	В	-	F/S	60	0.375	0.11	5	2.00	-	-	-	0.375	2.50	-	-	1.27	60
46	Α	-	F/S	60	0.375	0.11	5	2 50	_	_	_	0.375	2 50	_	_	1 27	60
40	В	-	F/S	00	0.575	0.11	5	2.50	_		_	0.575	2.50	_		1.27	00
17	Α	-	F/S	60	0.375	0.11	5	2 50	_	_	_	0.375	2 50	_	_	1.80	60
т/	В	-	F/S	00	0.375	0.11	5	2.50	_	_	_	0.375	2.50	_	-	1.07	00
18	Α	-	F/S	60	0.375	0.11	5	2.00	_	_	_	0.375	2 50	_	_	1 27	60
-10	В	-	F/S	00	0.375	0.11	5	2.00	_	-	-	0.375	2.50	-	_	1.27	00
49	Α	-	F	60	0.375	0.11	5	2.50	-	-	-	0.375	2.50	-	-	1.27	60
50	Α	-	F	60	0.375	0.11	5	1 75				0.500	3 50			1 27	60
50	В	-	F/S	00	0.375	0.11	5	1.75	-	-	-	0.500	3.30	-	-	1.27	00
51	Α	0.292	F/S	60	0.375	0.11	5	1.67	_	_	_	0.500	3.00	_	_	1 27	60
51	В	0.295	S/F	00	0.375	0.11	5	1.07	-	-	-	0.500	5.00	-	-	1.27	00
52	Α	0.603	F	60	0.375	0.11	5	1 75				0.375	1 75			2.51	60
32	В	0.378	F	00	0.375	0.11	5	1.75	-	-	-	0.375	1.75	-	-	2.31	00
53	Α	-	F	60	0.375	0.11	5	1 75				0.375	2.25			3 16	60
55	В	-	BY	00	0.375	0.11	5	1.75	-	-	-	0.375	2.23	-	-	5.10	00
54	Α	-	F	60	0.375	0.11	5	1 75				0.500	3 50			1 27	60
54	В	-	F	00	0.575	0.11	5	1.75	-	-	_	0.500	5.50	-	-	1.2/	00
55	Α	-	F	60	0.375	0.11	5	1 70				0.500	3 00			1 27	60
55	В	-	F	00	0.375	0.11	5	1.70	-	-	-	0.300	5.00	-	-	1.2/	00

	Specimen	Hook	Bend Angle	Trans. Reinf. Orient.	Hook Bar Type	l _{eh} in.	<i>l_{eh,avg}</i> in.	f'c psi	Age days	d₅ in.
56	8-5-90-0-0-2.5-2-10a	A B	90°	Para	A1035ª	10.3 10.5	10.4	5270	7	1
57	8-5-90-0-o-2.5-2-10b	A B	90°	Para	A1035ª	9.3 10.3	9.8	5440	8	1
58	8-5-90-0-o-2.5-2-10c	A B	90°	Para	A1035ª	10.8 10.5	10.6	5650	9	1
59	8-8-90-0-0-2.5-2-8	A B	90°	Para	A1035 ^b	8.6 8.3	8.4	8740	12	1
60	8-8-90-0-0-3.5-2-8	A B	90°	Para	A1035 ^b	7.6 8.0	7.8	8810	14	1
61	8-8-90-0-0-4-2-8	A B	90°	Para	A1035 ^b	8.1 8.3	8.2	8630	11	1
62	8-5-90-0-i-2.5-2-16	A B	90°	Para	A1035 ^b	16.0 16.8	16.4	4980	7	1
63	8-5-90-0-i-2.5-2-9.5	A B	90°	Para	A615	9.0 10.3	9.6	5140	8	1
64	8-5-90-0-i-2.5-2-12.5	A B	90°	Para	A615	13.3 13.3	13.3	5240	9	1
65	8-5-90-0-i-2.5-2-18	A B	90°	Para	A1035 ^b	19.5 17.9	18.7	5380	11	1
66	8-5-90-0-i-2.5-2-13	A B	90°	Para	A1035 ^b	13.3 13.5	13.4	5560	11	1
67	8-5-90-0-i-2.5-2-15(1)	A B	90°	Para	A1035 ^b	14.5 15.3	14.9	5910	14	1
68	8-5-90-0-i-2.5-2-15	A B	90°	Para	A1035 ^b	15.3 14.4	14.8	6210	8	1
69	8-8-90-0-i-2.5-2-8	A B	90°	Para	A1035 ^b	8.9 8.0	8.4	7910	15	1
70	8-8-90-0-i-2.5-2-10	A B	90°	Para	A1035 ^b	9.8 9.5	9.6	7700	14	1
71	8-8-90-0-i-2.5-2-8(1)	A B	90°	Para	A1035 ^b	8.0 8.0	8.0	8780	13	1
72	8-8-90-0-i-2.5sc-2tc-9 [‡]	A B	90°	Para	A615	9.5 9.5	9.5	7710	25	1
73	8-12-90-0-i-2.5-2-9	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
74	8-12-90-0-i-2.5-2-12.5	A B	90°	Para	A1035°	12.9 12.8	12.8	11850	39	1
75	8-12-90-0-i-2.5-2-12	A B	90°	Para	A1035°	12.1 12.1	12.1	11760	34	1
76	8-15-90-0-i-2.5-2-8.5	A B	90°	Para	A1035°	8.8 8.9	8.8	15800	61	1
77	8-15-90-0-i-2.5-2-13	A B	90°	Para	A1035°	12.8 12.8	12.8	15800	61	1
78	8-5-90-0-i-3.5-2-18	A B	90°	Para	A1035 ^b	19.0 18.0	18.5	5380	11	1
79	8-5-90-0-i-3.5-2-13	A B	90°	Para	A1035 ^b	13.4 13.4	13.4	5560	11	1

Table A.2 Data and test results for specimens with No. 8 hooked bars

[‡] Specimen contained A1035 Grade 120 for column longitudinal steel ^a Heat 1, ^b Heat 2, ^c Heat 3 as described in Table 2

	TT I.	R_r	b	h	h _{cl}	h _c	Cso	Cso,avg	Cth	Ch	Nh	Axial Load	Long. Reinf.
	Hook		in.	in.	in.	in.	in.	in.	in.	in.		kips	Layout ^o
56	A B	0.084	17.1	12.3	10.5	8.375	2.5 2.6	2.6	2.0 1.8	10.0	2	80	A2
57	A B	0.084	17.0	12.5	10.5	8.375	2.5 2.5	2.5	3.3 2.3	10.0	2	80	A2
58	A B	0.084	17.0	12.3	10.5	8.375	2.5 2.5	2.5	1.5 1.8	10.0	2	80	A2
59	A B	0.078	16.3	10.4	10.5	8.375	2.8 2.5	2.6	1.8 2.1	9.0	2	30	A2
60	A B	0.078	18.9	10.0	10.5	8.375	3.5 3.6	3.6	2.4 2.0	9.8	2	30	A2
61	A B	0.078	20.0	10.6	10.5	8.375	4.5 3.8	4.1	2.5 2.4	9.8	2	30	A2
62	A B	0.078	17.0	17.9	10.5	8.375	2.8 2.8	2.8	1.8 1.4	9.5	2	80	A2
63	A B	0.078	16.8	12.0	10.5	8.375	2.8 2.5	2.6	3.0 1.8	9.5	2	80	A2
64	A B	0.078	17.3	14.5	10.5	8.375	2.8 2.8	2.8	1.3 1.3	9.8	2	80	A2
65	A B	0.078	17.5	20.3	10.5	8.375	2.5 2.5	2.5	0.8 2.4	10.5	2	30	A6
66	A B	0.078	16.8	15.3	10.5	8.375	2.5 2.5	2.5	2.0 1.8	9.8	2	30	A2
67	A B	0.073	16.7	17.3	10.5	8.375	2.5 2.6	2.5	2.8 2.0	9.6	2	30	A2
68	A B	0.073	16.6	17.3	10.5	8.375	2.5 2.6	2.6	2.0 2.9	9.5	2	30	A2
69	A B	0.078	16.3	10.0	10.5	8.375	2.8 2.9	2.8	1.1 2.0	8.6	2	30	A2
70	A B	0.078	16.6	12.0	10.5	8.375	2.8 2.9	2.8	2.3 2.5	9.0	2	30	A2
71	A B	0.078	17.0	10.8	10.5	8.375	2.8 2.8	2.8	2.8 2.8	9.5	2	30	A2
72	A B	0.073	17.3	11.0	10.5	8.375	2.5 2.8	2.6	1.5 1.5	10.0	2	30	A2
73	A B	0.078	17.0	11.4	10.5	8.375	2.8 2.6	2.7	2.4 2.4	9.6	2	30	A2
74	A B	0.073	17.4	14.6	10.5	8.375	2.6 2.6	2.6	1.7 1.8	10.1	2	30	A2
75	A B	0.073	16.8	14.0	10.5	8.375	2.5 2.4	2.5	1.9 1.9	9.8	2	30	A2
76	A B	0.073	17.0	10.8	10.5	8.375	2.5 2.5	2.5	2.0 1.9	10.0	2	30	A6
77	A B	0.073	16.8	14.8	10.5	8.375	2.4 2.5	2.4	2.1 2.0	9.9	2	30	A7
78	A B	0.078	18.5	20.4	10.5	8.375	3.8 3.4	3.6	1.4 2.4	9.4	2	30	A6
79	A B	0.078	18.4	15.3	10.5	8.375	3.6 3.4	3.5	1.9 1.9	9.4	2	30	A2

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		T	Tina		T		bpeen	f	f	fuc	Joint shear at
	Hook	1 max	1 ma	1 total	1		$T/T_{\rm h}$	J su,max	Jsu	JS,ACI	
		lb	lb	lb	lb	lb		psi	psi	psi	failure/ $\sqrt{J_{cm}}$
56	A B	40645 46612	38970 45658	84628	42314	47578	0.89	51449 59003	53562	53798	3.4
57	A B	47870 30599	38190 29112	67302	33651	44958	0.75	60596 38733	42596	51366	2.6
58	A B	62682 54558	57437 54512	111949	55975	49790	1.12	79345 69061	70854	57046	4.3
59	AB	44396	32792 33238	66029	33015	44255	0.75	56198 42073	41791	56343	2.5
60	A	35613 44488	35613 36132	71745	35872	40883	0.88	45080	45408	52378	2.5
61	A	37130	35849 30173	75022	37511	42709	0.88	47000	47482	54329	2.3
62	A	83310 86063	83310 83160	166479	83239	75922	1.10	105455	105366	82541	4.7
63	A	44627	44627	88971	44485	43624	1.02	56489	56311	49289	3.7
64	A	65254 6972	65254 65255	131639	65819	61559	1.07	83291 82600	83316	68510	4.4
65	A	100169	82023	161763	80881	89312	0.91	88446 126796	102381	97907	3.8
66	A	73143	65881 65107	131078	65539	63253	1.04	92586	82960	71237	4.2
67	A	64532 87275	63197 64532	127534	63767	72061	0.88	82527	80718	81681	3.5
68	A	87275 76256	63002 76162	150955	75478	72778	1.04	96527	95541	83377	4.0
69	A	80724 54674	45317	90486	45243	42993	1.05	69208	57269	53601	3.8
70	A	45169 50000	45169 49985	102911	51455	49048	1.05	63291	65134	60328	3.6
71	B A	52926 38047	52926 35988	73642	36821	41882	0.88	66995 48161	46609	53544	26
72	B A	37660 35543	37654 35543	70100	35100	18392	0.00	47671 44991	44430	59583	2.6
72	B A	34656 50809	34656 50677	00945	40022	50970	0.75	43868 64315	(2102	(7012	2.0
/3	B A	54796 66009	49168 65995	99845	49923	50870	0.98	69362 83555	63193	6/912	3.0
74	B	77378	67878 65980	133873	66937	75268	0.89	97947 89479	84730	99624	2.9
75	B	65778	65778 43063	131758	65879	70837	0.93	83263	83391	93920	3.1
76	A B	43063	43063	87150	43575	55024	0.79	55807	55158	79122	2.3
77	A B	77232 79007	77232 79007	156239	78120	81605	0.96	97762 100009	98885	114756	3.0
78	A B	96026 105140	96026 94717	190743	95372	88362	1.08	121552 133089	120724	96925	4.2
79	A B	69449 68307	67892 68307	136199	68099	63253	1.08	87910 86464	86202	71237	3.9

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Hook	Slip at Failure	Failure Type	f _{yt}	d _{tr}	$A_{tr,l}$	N _{tr}	S _{tr}	A_{cti} in ²	Ncti	S _{cti}	d _s	S _s	d _{cto}	Ncto	A_s in ²	f_{ys} ksi
	А	-	F/S	KSI	111.	III. [_]			III					- 111.		III. [_]	KSI
56	В	0.186	S/F	60	-	-	-	-	3.10	5	3.5	0.63	3.50	-	-	3.16	60
57	A B	-	F/S S/F	60	-	-	-	-	3.10	5	3.5	0.63	3.50	-	-	3.16	60
58	A B	- 0.132	F/S S/F/TK	60	-	-	-	-	3.10	5	3.5	0.63	3.50	-	-	3.16	60
59	A B	0.153 0.113	S/TK S/TK	60	-	-	-	-	2.00	10	3.0	0.50	1.75	-	-	3.16	60
60	A B	-	F/S S/F	60	-	-	-	-	2.00	10	3.0	0.50	1.75	-	-	3.16	60
61	A B	0.362 .(0.017)	S/F S	60	-	-	-	-	2.00	10	3.0	0.50	1.75	-	-	3.16	60
62	A B	-	F/S F/TK	60	-	-	-	-	2.00	10	3.0	0.50	3.00	-	-	3.16	60
63	A B	-	F S	60	-	-	-	-	2.00	10	3.0	0.50	3.00	-	-	3.16	60
64	A B	-	S/F S	60	-	-	-	-	2.00	10	3.0	0.50	3.00	-	-	3.16	60
65	A B	- 0.153	F/S/TK F/S/TK	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	1	3.78	60
66	A B	-	S F/S	60	-	-	-	-	1.00	5	3.0	0.50	3.00	0.375	1	3.16	60
67	A B	-	F/S S	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	2	3.16	60
68	A B		S/F S/F	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	2	3.16	60
69	A B	-	F/TK F/S	60	-	-	-	-	1.60	8	4.0	0.50	1.75	-	-	3.16	60
70	A B	0.195 0.185	F F	60	-	-	-	-	1.60	8	4.0	0.63	3.50	-	-	3.16	60
71	A B	0.387 0.229	F/S F/S	60	-	-	-	-	1.60	8	4.0	0.50	1.50	-	-	3.16	60
72	A B	0.104 0	F F	60	-	-	-	-	-	-	-	0.38	4.00	-	-	3.16	60
73	A B	0.219	F/S S/F	60	-	-	-	-	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
74	A B	0.295 0.266	F/S F/S	60	-	-	-	-	-	-	-	0.50	2.25	-	-	3.16	60
75	A B	- 0.0119	S/F F/S	60	-	-	-	-	-	-	-	0.38	4.00	-	-	3.16	60
76	A B	-	F F	60	-	-	-	-	-	-	-	0.38	4.00	-	-	3.78	60
77	A B	-	F/S F	60	-	-	-	-	-	-	-	0.38	5.00	-	-	4.74	60
78	A B	0.181	F/S/TK F/S	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	1	3.78	60
79	A B	-	F/S S/F	60	-	-	-	-	1.00	5	3.0	0.50	3.00	0.375	1	3.16	60

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Specimen	Hook	Bend Angle	Trans. Reinf. Orient.	Hook Bar Type	l _{eh} in.	<i>leh</i> ,avg in.	f'c psi	Age davs	db in.
80	8-5-90-0-i-3.5-2-15(2)	A B	90°	Para	A1035°	15.6 14.9	15.3	5180	8	1
81	8-5-90-0-i-3.5-2-15(1)	A B	90°	Para	A1035°	15.4 15.1	15.3	6440	9	1
82	8-8-90-0-i-3.5-2-8(1)	A B	90°	Para	A1035 ^b	7.8 7.8	7.8	7910	15	1
83	8-8-90-0-i-3.5-2-10	A B	90°	Para	A1035 ^b	8.8 10.8	9.8	7700	14	1
84	8-8-90-0-i-3.5-2-8(2)	A B	90°	Para	A1035 ^b	8.5 8.0	8.3	8780	13	1
85	8-12-90-0-i-3.5-2-9	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
86	8-8-90-0-i-4-2-8	A B	90°	Para	A1035 ^b	7.6 8.0	7.8	8740	12	1
87	8-5-90-1#3-i-2.5-2-16	A B	90°	Para	A1035 ^b	15.6 15.6	15.6	4810	6	1
88	8-5-90-1#3-i-2.5-2-12.5	A B	90°	Para	A1035 ^b	12.5 12.5	12.5	5140	8	1
89	8-5-90-1#3-i-2.5-2-9.5	A B	90°	Para	A615	9.0 9.0	9.0	5240	9	1
90	8-5-90-2#3-i-2.5-2-16	A B	90°	Para	A1035 ^b	15.0 15.8	15.4	4810	6	1
91	8-5-90-2#3-i-2.5-2-9.5	A B	90°	Para	A615	9.0 9.3	9.1	5140	8	1
92	8-5-90-2#3-i-2.5-2-12.5	A B	90°	Para	A615	12.0 12.0	12.0	5240	9	1
93	8-5-90-2#3-i-2.5-2-8.5	A B	90°	Para	A1035°	8.9 9.6	9.3	5240	6	1
94	8-5-90-2#3-i-2.5-2-14	A B	90°	Para	A1035°	13.5 14.0	13.8	5450	7	1
95	8-8-90-2#3-i-2.5-2-8	A B	90°	Para	A1035 ^b	8.0 8.5	8.3	7700	14	1
96	8-8-90-2#3-i-2.5-2-10	A B	90°	Para	A1035 ^b	9.9 9.5	9.7	8990	17	1
97	8-12-90-2#3-i-2.5-2-9	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
98	8-12-90-2#3-i-2.5-2-11	A B	90°	Para	A1035°	10.5 11.3	10.9	12010	42	1
99	8-12-90-2#3vr-i-2.5-2-11	A B	90°	Perp	A1035°	10.9 10.4	10.6	12010	42	1
100	8-15-90-2#3-i-2.5-2-6	A B	90°	Para	A1035°	5.8 6.4	6.1	15800	61	1
101	8-15-90-2#3-i-2.5-2-11	A B	90°	Para	A1035°	11.3 10.8	11.0	15800	61	1
102	8-5-90-2#3-i-3.5-2-17	A B	90°	Para	A1035 ^b	17.5 17.0	17.3	5570	12	1
103	8-5-90-2#3-i-3.5-2-13	A B	90°	Para	A1035 ^b	13.8 13.5	13.6	5560	11	1

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

^a Heat 1, ^b Heat 2, ^c Heat 3 as described in Table 2

	Haak	R _r	b	h	h _{cl}	h _c	Cso	Cso,avg	C th	Ch	Nh	Axial Load	Long. Reinf.
	Ноок		in.	in.	in.	in.	in.	in.	in.	in.		kips	Layout ^o
80	A B	0.073	18.5	17.3	10.5	8.375	3.5 3.5	3.5	1.6 2.4	9.5	2	30	A2
81	A B	0.073	18.8	17.1	10.5	8.375	3.3 3.4	3.3	1.8 2.0	10.1	2	30	A2
82	A B	0.078	18.3	10.0	10.5	8.375	3.5 3.8	3.6	2.3 2.3	9.0	2	30	A2
83	A B	0.078	18.5	12.0	10.5	8.375	3.8 3.8	3.8	3.3 1.3	9.0	2	30	A2
84	A B	0.078	19.4	10.6	10.5	8.375	3.6 3.8	3.7	2.1 2.6	10.0	2	30	A2
85	A B	0.078	19.0	11.3	10.5	8.375	3.5 3.8	3.6	2.4 2.1	9.8	2	30	A2
86	A B	0.078	19.9	10.5	10.5	8.375	4.5 3.9	4.2	2.9 2.5	9.5	2	30	A2
87	A B	0.078	17.3	17.9	10.5	8.375	2.8 3.0	2.9	2.3 2.3	9.5	2	80	A2
88	A B	0.078	17.1	14.6	10.5	8.375	2.6 2.8	2.7	2.1 2.1	9.8	2	80	A2
89	A B	0.078	17.1	11.5	10.5	8.375	2.6 2.8	2.7	2.5 2.5	9.8	2	80	A2
90	A B	0.078	17.1	17.9	10.5	8.375	2.8 2.9	2.8	2.9 2.1	9.5	2	80	A2
91	A B	0.078	17.0	11.6	10.5	8.375	2.5 2.5	2.5	2.6 2.3	10.0	2	80	A2
92	A B	0.078	17.0	14.6	10.5	8.375	2.8 2.8	2.8	2.6 2.6	9.5	2	80	A2
93	A B	0.073	17.1	10.7	10.5	8.375	3.0 3.0	3.0	1.8 1.1	9.1	2	30	A2
94	A B	0.073	17.0	16.1	10.5	8.375	2.8 3.0	2.9	2.6 2.1	9.3	2	30	A2
95	A B	0.078	16.9	10.0	10.5	8.375	3.0 2.9	2.9	2.0 1.5	9.0	2	30	A2
96	A B	0.078	16.0	12.0	10.5	8.375	2.8 2.8	2.8	2.1 2.5	8.5	2	30	A2
97	A B	0.078	17.0	11.3	10.5	8.375	2.9 2.6	2.8	2.3 2.3	9.5	2	30	A2
98	A B	0.073	17.0	12.9	10.5	8.375	2.8 2.8	2.8	2.4 1.6	9.5	2	30	A2
99	A B	0.073	16.5	13.0	10.5	8.375	2.5 2.3	2.4	2.1 2.6	9.8	2	30	A2
100	A B	0.073	16.8	8.1	10.5	8.375	2.5 2.4	2.4	2.3 1.8	9.9	2	30	A11
101	A B	0.073	17.0	13.1	10.5	8.375	2.5 2.5	2.5	1.9 2.4	10.0	2	30	A11
102	A B	0.078	18.9	19.3	10.5	8.375	3.3 3.5	3.4	1.8 2.3	10.1	2	30	A2
103	A B	0.078	19.0	15.3	10.5	8.375	3.1 3.6	3.4	1.5 1.8	10.3	2	30	A2

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

° Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		Tmax	Tind	Ttotal	T	Th	- speen	fsu,max	fsu	fs,ACI	Joint shear at
	Hook	lb	њ	lb	њ	њ	<i>T/T</i> h	nsi	nsi	nsi	failure/ \sqrt{f}
		10(104	10	10	10	10		124410	psi	psi	
80	A B	106184 85459	89959 85459	175417	87709	71213	1.23	134410 108176	111024	78398	4.6
81	A B	71216 79405	70412 70890	141302	70651	75854	0.93	90146 100512	89432	87415	3.3
	A	43697	43697					55313			
82	В	43993	43993	87690	43845	39289	1.12	55687	55500	49234	3.3
82	Α	55230	55088	111124	55567	40724	1 1 2	69911	70228	61111	2.5
03	В	71880	56046	111134	55507	49724	1.12	90987	70338	01111	3.3
84	А	41170	41170	84069	42034	43271	0.97	52114	53208	55217	2.6
	B	42930	42899					54341			-
85	A	61380	61380 50007	120477	60238	50870	1.18	7/696	76251	67912	3.2
	B A	08383	37554					80303 47537			
86	B	48708	37309	74863	37431	40788	0.92	61656	47381	52170	2.3
~ ~	A	94588	75682					119731			
87	В	73936	73936	149617	74809	76769	0.97	93589	94694	77429	4.2
00	Α	73919	64891	120674	64927	62777	1.02	93569	82072	64012	4.4
00	В	64783	64783	1290/4	04637	02777	1.05	82004	82072	04012	4.4
89	Α	62525	59716	124467	62233	46082	1.35	79145	78776	46535	5.3
	B	65289	64750	12	02200		1100	82645	10110		0.0
90	A	80014	79629	159258	79629	75532	1.05	101284	100796	76166	4.5
	В	92780 54016	79629					60512			
91	A P	53621	53621	107242	53621	46453	1.15	67874	67874	46729	4.6
	Δ	74108	67801					93808			
92	B	76334	76334	144135	72067	60649	1.19	96625	91225	62047	4.9
	A	52863	52862					66915			
93	В	48439	48260	101122	50561	47286	1.07	61315	64001	47828	4.6
0.4	Α	76959	76388	152027	7(0(4	(0005	1 10	97416	07422	72506	1.6
94	В	77540	77540	153927	/6964	69985	1.10	98151	97422	/2506	4.0
95	Α	46211	46211	05751	47876	46882	1.02	58495	60602	51710	3.0
,5	В	55377	49540	75751	47870	40002	1.02	70098	00002	51710	5.7
96	А	60670	60670	122047	61024	56882	1.07	76797	77245	65609	4.1
	B	67001	61378					84812			
97	A D	61813	61813	122026	61013	56097	1.09	/8244 76267	77232	67912	3.7
	Δ Δ	68128	68101					86237			
98	B	79794	69264	137365	68683	68734	1.00	101004	86940	85128	3.5
	A	50709	50709					64188			
99	В	66830	54637	105346	52673	64971	0.81	84595	66674	83171	2.7
100	Α	37450	37450	75120	275(0	12442	0.90	47405	1755(54710	2.7
100	В	37689	37689	/5138	3/369	42443	0.89	47707	4/556	54/12	2.7
101	A	99011	83072	166640	83320	74830	1 1 1	125330	105468	98763	3.6
101	В	83603	83567	100040	03320	/ 1050	1.11	105827	105400	20703	5.0
102	Α	102613	91402	179829	89914	88104	1.02	129889	113816	91958	4.0
- • -	B	88572	88426					112117			
103	A	81199	81199	160720	80360	69734	1.15	102783	101722	72568	4.5
1	В	86858	79522					109946			1

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Hook	Slip at Failure	Failure Type	f_{yt}	d _{tr}	$A_{tr,l}$	N _{tr}	S _{tr}	A _{cti}	Ncti	S _{cti}	d_s	S _s	d _{cto}	Ncto	A_s	f_{ys}
	А	<u>in.</u>	S	KSI	ın.	in.²		ın.	in. ²	10	in.	in.	in.	in.		1n. ²	KSI
80	В	-	S/F	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	2	3.16	60
81	A B		S/F S	60	-	-	-	-	1.10	10	3.0	0.38	3.50	0.375	2	3.16	60
82	A B	0.144 0.156	S/F S/F	60	-	-	-	-	1.60	8	4.0	0.50	1.75	-	-	3.16	60
83	A B	0.195 0.242	F/S S/F	60	-	-	-	-	1.60	8	4.0	0.63	3.50	-	-	3.16	60
84	A B	0.133 0.201	F F	60	-	-	-	-	1.60	8	4.0	0.50	1.50	-	-	3.16	60
85	A B	0.434	F F/S	60	-	-	-	-	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
86	A B	-	F/S F	60	-	-	-	-	1.60	8	4.0	0.50	1.75	-	-	3.16	60
87	A B	-	F/S F/S	60	0.38	0.11	1	9.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
88	A B	-	F/S S/F	60	0.38	0.11	1	9.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
89	A B	-	S F/S	60	0.38	0.11	1	9.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
90	A B	-	S/F F	60	0.38	0.11	2	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
91	A B	-	F F	60	0.38	0.11	2	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
92	A B	-	F F/S	60	0.38	0.11	2	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
93	A B		F/S S	60	0.38	0.11	2	7.50	2.00	10	2.5	0.50	3.25	0.5	1	3.16	60
94	A B		S/F F/S	60	0.38	0.11	2	6.00	0.88	8	3.0	0.50	3.50	0.5	1	3.16	60
95	A B	-	F/S F/S	60	0.38	0.11	2	7.13	1.20	6	4.0	0.50	1.50	-	-	3.16	60
96	A B	0.186 0.152	F F	60	0.38	0.11	2	7.13	1.20	6	4.0	0.63	3.50	-	-	3.16	60
97	A B	0.345 0.361	F/S S/F	60	0.38	0.11	2	8.00	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
98	A B	0.181 0.165	F F	60	0.38	0.11	2	8.00	-	-	-	0.50	2.00	-	-	3.16	60
99	A B	- 0.13	F/S F	60	0.38	0.11	2	2.67	-	-	-	0.50	2.00	-	-	3.16	60
100	A B	-	F F	60	0.38	0.11	2	6.00	-	-	-	0.38	2.75	-	-	6.32	60
101	A B	0.123	F F	60	0.38	0.11	2	5.50	-	-	-	0.38	4.00	-	-	6.32	60
102	A B	-	S S/F	60	0.38	0.11	2	8.00	0.80	4	4.0	0.50	4.00	0.375	1	3.16	60
103	A B	-	S/F S/F	60	0.38	0.11	2	8.00	0.44	4	4.0	0.50	3.00	-	-	3.16	60

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Specimen	Hook	Bend Angle	Trans. Reinf. Orient.	Hook Bar Type	l _{eh} in.	<i>leh</i> ,avg in.	f'c nsi	Age days	db in.
104	8-8-90-2#3-i-3.5-2-8	A B	90°	Para	A1035 ^b	8.0 8.1	8.1	8290	16	1
105	8-8-90-2#3-i-3.5-2-10	A B	90°	Para	A1035 ^b	8.8 8.8	8.8	8990	17	1
106	8-12-90-2#3-i-3.5-2-9	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
107	8-8-90-2#4-i-2.5-2-10	A B	90°	Para	A1035 ^b	8.5 9.3	8.9	8290	16	1
108	8-8-90-2#4-i-3.5-2-10	A B	90°	Para	A1035 ^b	9.0 9.8	9.4	8290	16	1
109	8-5-90-4#3-i-2.5-2-16	B A	90°	Para	A1035 ^b	16.0 16.3	16.1	4810	6	1
110	8-5-90-4#3-i-2.5-2-12.5	A B	90°	Para	A1035 ^b	11.9 11.9	11.9	4980	7	1
111	8-5-90-4#3-i-2.5-2-9.5	A B	90°	Para	A615	9.5 9.5	9.5	5140	8	1
112	8-5-90-5#3-0-2.5-2-10a	A B	90°	Para	A1035ª	10.3 10.5	10.4	5270	7	1
113	8-5-90-5#3-0-2.5-2-10b	A B	90°	Para	A1035ª	10.5 10.5	10.5	5440	8	1
114	8-5-90-5#3-0-2.5-2-10c	A B	90°	Para	A1035ª	11.3 10.5	10.9	5650	9	1
115	8-8-90-5#3-0-2.5-2-8	A B	90°	Para	A1035 ^b	8.3 8.8	8.5	8630	11	1
116	8-8-90-5#3-0-3.5-2-8	A B	90°	Para	A1035 ^b	7.8 8.0	7.9	8810	14	1
117	8-8-90-5#3-0-4-2-8	A B	90°	Para	A1035 ^b	8.5 8.0	8.3	8740	12	1
118	8-5-90-5#3-i-2.5-2-10b	A B	90°	Para	A1035ª	10.3 10.5	10.4	5440	8	1
119	8-5-90-5#3-i-2.5-2-10c	A B	90°	Para	A1035ª	10.5 10.5	10.5	5650	9	1
120	8-5-90-5#3-i-2.5-2-15	A B	90°	Para	A1035 ^b	15.3 15.8	15.5	4850	7	1
121	8-5-90-5#3-i-2.5-2-13	A B	90°	Para	A1035 ^b	13.8 13.5	13.6	5560	11	1
122	8-5-90-5#3-i-2.5-2-12(1)	A B	90°	Para	A1035°	11.5 11.1	11.3	5090	7	1
123	8-5-90-5#3-i-2.5-2-12	A B	90°	Para	A1035°	11.3 12.3	11.8	5960	7	1
124	8-5-90-5#3-i-2.5-2-12(2)	A B	90°	Para	A1035°	12.4 12.0	12.2	5240	6	1
125	8-5-90-5#3-i-2.5-2-8	A B	90°	Para	A1035°	7.8 7.4	7.6	5240	6	1
126	8-5-90-5#3-i-2.5-2-10a	В	90°	Para	A1035 ^a	10.5	10.5	5270	7	1
127	8-8-90-5#3-i-2.5-2-8	A B	90°	Para	A1035 ^b	7.3 7.3	7.3	8290	16	1

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

^a Heat 1, ^b Heat 2, ^c Heat 3 as described in Table 2

	Hook	R _r	b in.	h in.	<i>h</i> cl in.	hc in.	c _{so} in.	Cso,avg	Cth in.	с _ћ in.	Nh	Axial Load kips	Long. Reinf. Layout ^o
104	A B	0.078	17.9	10.0	10.5	8.375	3.6 3.8	3.7	2.0 1.9	8.5	2	30	A2
105	A B	0.078	17.9	12.0	10.5	8.375	3.6 3.8	3.7	3.3	8.5	2	30	A2
106	AB	0.078	19.3	11.3	10.5	8.375	3.6 4.0	3.8	2.3 2.4	9.6	2	30	A2
107	AB	0.078	17.3	12.0	10.5	8.375	3.0	3.0	3.5 2.8	9.3	2	30	A2
108	AB	0.078	18.8	12.0	10.5	8.375	3.8 3.9	3.8	3.0	9.1	2	30	A2
109	BA	0.078	17.3	17.9	10.5	8.375	2.8 3.0	2.9	1.9 1.6	9.5	2	80	A2
110	A B	0.078	17.0	13.9	10.5	8.375	2.5 2.5	2.5	2.0 2.0	10.0	2	80	A2
111	A B	0.078	17.1	11.5	10.5	8.375	2.8 2.9	2.8	2.0 2.0	9.5	2	80	A2
112	A B	0.084	17.1	12.3	10.5	8.375	2.6 2.6	2.6	1.8 2.0	9.9	2	80	A2
113	A B	0.084	17.0	12.5	10.5	8.375	2.5 2.6	2.6	2.0 2.0	9.9	2	80	A2
114	A B	0.084	17.0	12.5	10.5	8.375	2.6 2.5	2.6	1.3 2.0	9.9	2	80	A2
115	A B	0.078	16.8	10.0	10.5	8.375	2.8 2.8	2.8	1.8 1.3	9.3	2	30	A2
116	A B	0.078	18.5	10.0	10.5	8.375	3.5 3.5	3.5	2.3 2.0	9.5	2	30	A2
117	A B	0.078	20.4	10.0	10.5	8.375	3.9 4.5	4.2	1.5 2.0	10.0	2	30	A2
118	A B	0.084	17.3	12.3	10.5	8.375	2.8 2.6	2.7	2.0 1.8	9.9	2	80	A2
119	A B	0.084	17.0	12.5	10.5	8.375	2.5 2.5	2.5	2.0 2.0	10.0	2	80	A2
120	A B	0.078	17.1	17.2	10.5	8.375	2.8 2.5	2.6	1.9 1.4	9.9	2	30	A2
121	A B	0.078	17.1	15.3	10.5	8.375	2.5 2.4	2.4	1.5 1.8	10.3	2	30	A2
122	A B	0.073	16.8	14.1	10.5	8.375	2.5 2.5	2.5	2.6 3.0	9.8	2	30	A2
123	A B	0.073	16.6	14.3	10.5	8.375	2.5 2.4	2.4	3.0 2.0	9.8	2	30	A2
124	A B	0.073	16.1	14.1	10.5	8.375	2.5 2.6	2.6	1.8 2.1	9.0	2	30	A2
125	A B	0.073	16.6	10.3	10.5	8.375	2.8 2.9	2.8	2.6 2.9	9.0	2	30	A2
181	В	0.084	16.8	12.3	10.5	8.375	2.5	2.5	1.8	9.8	2	80	A2
127	A B	0.078	16.1	10.0	10.5	8.375	2.9 2.8	2.8	2.8 2.8	8.5	2	30	A2

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		Tmax	Tind	Ttotal	T		- spoon	fsu.max	fsu	fs.ACI	Joint shear at
	Hook	lh	њ	lh	њ	њ	$T/T_{\rm h}$	nci	nci	nci	foilung / f
		10	10	10	10	10		psi	psi	psi	Tanure / $\sqrt{J_{cm}}$
104	A B	48324 49258	48324 49222	97545	48773	46759	1.04	61169 62352	61738	52435	3.6
105	A B	53960 53810	53960 53810	107770	53885	51599	1.04	68304 68113	68209	59260	3.2
106	A	50266	50266	99555	49777	56097	0.89	63628	63009	67912	2.6
	В	49289	49289					62391			
107	A B	71322	61280 61434	122721	61360	55832	1.10	90281	77671	57719	3.9
109	А	69451	69451	122025	60462	59592	1 10	87913	87027	60071	4.1
108	В	69474	69474	138923	09403	20202	1.19	87942	8/92/	00971	4.1
109	В	91801	91801	180857	90429	84844	1.07	116204	114467	79881	51
107	Α	97200	89056	100057	70427	0-0-1	1.07	123038	114407	79001	5.1
110	Α	83079	68532	137165	68583	64929	1.06	105164	86814	59883	5.0
110	В	68634	68634	15/105	00505	01)2)	1.00	86878	00011	57005	5.0
111	Α	63275	55094	109827	54914	53922	1.02	80094	69511	48649	4.7
	В	54846	54733	10/02/	0.011	00722	1.02	69425	0,011		,
112	А	55700	53308	108513	54257	64329	0.84	70507	68679	67247	4.3
	В	55774	55206	100215	51257	01325	0.01	70601	00077	07217	
113	Α	66444	61714	131183	65592	65382	1.00	84107	83027	69147	51
115	В	69470	69470	151105	03372	05502	1.00	87936	05027	07117	5.1
114	Α	80648	80648	138988	69494	67783	1.03	102086	87967	72985	53
114	В	58800	58340	150700	07474	07705	1.05	74430	07707	72705	5.5
115	А	56092	56092	115062	57081	61180	0.95	71002	73304	70503	4.5
115	В	66796	59870	115702	57781	01107	0.75	84551	75574	70505	ч.5
116	Α	53926	53865	109914	54957	57980	0.95	68261	69566	65996	3.8
	В	56134	56048					71055			
117	Α	39553	39553	78142	39071	59964	0.65	50067	49457	68864	2.5
,	В	41461	38589	, 01 12	07071	0,,,0.	0.00	52483	.,		2.0
118	Α	78824	75418	139430	69715	64769	1.08	99777	88247	68323	54
	В	66728	64012	157 150	07715	01705	1.00	84466	00217	00525	5.1
119	Α	68947	68071	137674	68837	65920	1 04	87275	87136	70469	52
	В	69633	69604	10707.	00007	00720	1.0.1	88143	0,100	10.05	
120	Α	77125	74150	146753	73377	87983	0.83	97627	92882	96574	43
	В	72603	72603	110700	10011	01200	0.02	91903	/2002	, , , , ,	
121	А	93116	83412	164752	82376	81257	1.01	117868	104273	90710	5.1
121	В	81340	81340	101752	02370	01237	1.01	102962	101275	20/10	5.1
122	Α	66726	66726	132727	66363	68375	0.97	84463	84004	72061	48
122	В	75878	66001	152727	00505	00575	0.97	96048	01001	72001	1.0
123	Α	84900	*	72000	72000	73010	0.99	107468	91139	80992	2.4
123	В	72000	72000	72000	72000	/5010	0.99	91139	<i><i>у</i>11<i>3у</i></i>	00772	2.1
124	Α	72359	72321	142939	71470	73090	0.98	91593	90468	78770	53
127	В	77425	70619	1 12/3/	/17/0	15070	0.90	98006	20100	10110	5.5
125	A	48024	47948	94956	47478	50723	0.94	60790	60099	48878	4.6
120	В	47008	47008	71750	1, 1, 0	50725	0.71	59503	00077	10070	
181	В	82800	82800	82800	82800	64937	1.28	104800	104800	68100	3.4
127	Α	56006	49326	100532	50266	53850	0.93	70893	63628	58938	41
12/	В	51206	51206	100552	50200	55657	0.75	64818	05020	56756	7.1

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Hook	Slip at Failure	Failure	f_{yt}	<i>d</i> _{tr}	A _{tr,l}	Ntr	S _{tr}	Acti	Ncti	S _{cti}	<i>d</i> _s	S _s	d _{cto}	Ncto	A_s	f_{ys}
		in.	Туре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
104	A B	0.31 .340(.147)	F F	60	0.38	0.11	2	7.13	1.20	6	4.0	0.50	1.50	-	-	3.16	60
105	A B	-	S F	60	0.38	0.11	2	7.13	1.20	6	4.0	0.63	3.50	-	-	3.16	60
106	A B	0.15	F/S F/S	60	0.38	0.11	2	8.00	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
107	A B	0.171 .285(.129)	F/S F/S	60	0.5	0.20	2	7.13	1.20	6	4.0	0.50	2.00	-	-	3.16	60
108	A B	0.26 .181(.104)	S/F F/S	60	0.5	0.20	2	7.13	1.20	6	4.0	0.50	2.00	-	-	3.16	60
109	B A	-	F/S F/S	60	0.38	0.11	4	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
110	A B	-	F F	60	0.38	0.11	4	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
111	A B	-	F F/S	60	0.38	0.11	4	3.00	2.00	10	3.0	0.50	3.00	-	-	3.16	60
112	A B	- 0.213	S S	60	0.38	0.11	5	3.00	1.10	10	3.0	0.63	5.00	-	-	3.16	60
113	A B	0.203 0.235	F/S S/F	60	0.38	0.11	5	3.00	1.10	10	3.0	0.63	5.00	-	-	3.16	60
114	A B	-	S/F S/F	60	0.38	0.11	5	3.00	1.10	10	3.0	0.63	5.00	-	-	3.16	60
115	A B	0.253 .237(.033)	F/S F/S	60	0.38	0.11	5	3.00	2.00	10	3.0	0.50	1.75	-	-	3.16	60
116	A B	251(.249)	F F/S	60	0.38	0.11	5	3.00	2.00	10	3.0	0.50	1.75	-	-	3.16	60
117	A B	0.388 0.754	S/F F	60	0.38	0.11	5	3.00	2.00	10	3.0	0.50	1.75	-	-	3.16	60
118	A B	0.129	F/S F	60	0.38	0.11	5	3.00	1.10	10	3.0	0.63	5.00	-	-	3.16	60
119	A B	-	F/S F/S	60	0.38	0.11	5	3.00	1.10	10	3.0	0.63	5.00	-	-	3.16	60
120	A B	0.196	F/S F/S	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.375	2	3.16	60
121	A B	-	S/F F/S	60	0.38	0.11	5	3.00	1.00	5	3.0	0.50	3.00	0.375	1	3.16	60
122	A B	-	S/F S/F	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.5	2	3.16	60
123	A B		S S	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.5	2	3.16	60
124	A B		F/S F/S	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.375	1	3.16	60
125	A B	0.321	F F	60	0.38	0.11	5	3.00	1.55	5	3.0	0.50	3.00	0.5	1	3.16	60
181	В	0.164	F/S	60	0.375	0.11	5	3.0	1.10	10	3.0	0.63	3.50	-	-	3.16	60
127	A B	0.3	F F	60	0.38	0.11	5	3.00	1.20	6	3.0	0.50	1.50	-	-	3.16	60

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Snaaiman	Hook	Bend	Trans. Reinf.	Hook Bar	leh	leh,avg	f'c	Age	d _b
	Specifien	поок	Angle	Orient.	Туре	in.	in.	psi	days	in.
128	8-8-90-5#3-i-2.5-2-9 [‡]	A B	90°	Para	A615	8.6 9.0	8.8	7710	25	1
129	8-12-90-5#3-i-2.5-2-9	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
130	8-12-90-5#3-i-2.5-2-10	A B	90°	Para	A1035°	9.0 9.9	9.4	11800	38	1
131	8-12-90-5#3-i-2.5-2-12 [‡]	A B	90°	Para	A1035°	12.2 12.3	12.2	11760	34	1
132	8-12-90-5#3vr-i-2.5-2-10	A B	90°	Perp	A1035°	10.3 10.2	10.2	11800	38	1
133	8-12-90-4#3vr-i-2.5-2-10	A B	90°	Perp	A1035°	10.6 10.3	10.4	11850	39	1
134	8-15-90-5#3-i-2.5-2-6	A B	90°	Para	A1035°	6.5 6.1	6.3	15800	60	1
135	8-15-90-5#3-i-2.5-2-10	A B	90°	Para	A1035°	10.6 9.7	10.1	15800	60	1
136	8-5-90-5#3-i-3.5-2-15	A B	90°	Para	A1035 ^b	15.8 15.8	15.8	4850	7	1
137	8-5-90-5#3-i-3.5-2-13	A B	90°	Para	A1035 ^b	13.3 13.0	13.1	5570	12	1
138	8-5-90-5#3-i-3.5-2-12(1)	A B	90°	Para	A1035°	12.8 12.3	12.5	5090	7	1
139	8-5-90-5#3-i-3.5-2-12	A B	90°	Para	A1035°	12.5 11.8	12.1	6440	9	1
140	8-8-90-5#3-i-3.5-2-8	A B	90°	Para	A1035 ^b	8.0 8.0	8.0	7910	15	1
141	8-12-90-5#3-i-3.5-2-9*	A B	90°	Para	A1035 ^b	9.0 9.0	9.0	11160	77	1
142	8-5-90-4#4s-i-2.5-2-15	A B	90°	Para	A1035 ^b	15.6 15.6	15.6	4810	6	1
143	8-5-90-4#4s-i-2.5-2-12(1)	A B	90°	Para	A1035°	12.3 12.5	12.4	5180	8	1
144	8-5-90-4#4s-i-2.5-2-12	A B	90°	Para	A1035°	12.0 12.6	12.3	6210	8	1
145	8-5-90-4#4s-i-3.5-2-15	A B	90°	Para	A1035 ^b	15.5 15.1	15.3	4810	6	1
146	8-5-90-4#4s-i-3.5-2-12(1)	A B	90°	Para	A1035°	12.0 11.9	11.9	5910	14	1
147	8-5-90-4#4s-i-3.5-2-12	A B	90°	Para	A1035°	12.0 12.5	12.3	5960	7	1

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

[‡] Specimen contained A1035 Grade 120 for column longitudinal steel ^a Heat 1, ^b Heat 2, ^c Heat 3 as described in Table 2

	Hook	R_r	b in.	h in.	h _{cl} in.	h _c in.	c _{so}	C _{so,avg} in.	C _{th} in.	c _h in.	N_h	Axial Load kips	Long. Reinf. Lavout ^o
128	A B	0.073	17.8	11.0	10.5	8.375	2.8	3.0	2.4	9.8	2	30	A2
129	A B	0.078	16.6	11.5	10.5	8.375	2.5 2.6	2.6	2.5 2.5	9.5	2	30	A2
130	A B	0.073	16.8	12.2	10.5	8.375	2.6 2.3	2.4	3.2 2.3	9.9	2	30	A2
131	A B	0.073	16.9	14.2	10.5	8.375	2.4 2.5	2.4	2.0 1.9	10.0	2	30	A2
132	A B	0.073	16.6	11.9	10.5	8.375	2.5 2.4	2.4	1.7 1.7	9.8	2	30	A2
133	A B	0.073	16.0	12.4	10.5	8.375	2.5 2.5	2.5	1.8 2.1	9.0	2	30	A2
134	A B	0.073	17.0	8.3	10.5	8.375	2.6 2.6	2.6	1.8 2.2	9.8	2	30	A11
135	A B	0.073	16.7	12.1	10.5	8.375	2.4 2.4	2.4	1.6 2.4	9.9	2	30	A11
136	A B	0.078	19.3	17.0	10.5	8.375	3.6 3.5	3.5	1.3 1.3	10.3	2	30	A2
137	A B	0.078	19.3	15.4	10.5	8.375	3.4 3.5	3.4	2.1 2.4	10.4	2	30	A2
138	A B	0.073	18.7	14.3	10.5	8.375	3.5 3.4	3.5	1.6 2.1	9.8	2	30	A2
139	A B	0.073	18.6	14.2	10.5	8.375	3.4 3.5	3.4	1.7 2.4	9.8	2	30	A2
140	A B	0.078	18.0	10.0	10.5	8.375	3.5 3.6	3.6	2.0 2.0	8.9	2	30	A2
141	A B	0.078	18.1	11.5	10.5	8.375	3.3 3.4	3.3	2.5 2.5	9.5	2	30	A2
142	A B	0.078	17.0	17.3	10.5	8.375	3.0 2.9	2.9	1.6 1.6	9.1	2	30	A2
143	A B	0.073	17.1	14.4	10.5	8.375	2.5 2.6	2.6	2.1 1.9	10.0	2	30	A2
144	A B	0.073	16.6	14.3	10.5	8.375	2.6 2.5	2.6	2.3 1.6	9.5	2	30	A2
145	A B	0.078	19.6	17.3	10.5	8.375	4.1 4.0	4.1	1.8 2.1	9.5	2	30	A2
146	A B	0.073	19.0	14.3	10.5	8.375	3.8 3.5	3.6	2.3 2.4	9.8	2	30	A2
147	A B	0.073	18.3	14.4	10.5	8.375	3.8 3.5	3.6	2.4 1.9	9.0	2	30	A2

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

° Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		T		T	T	T.		f	f	f	Inint shear at
	Hook	1 max	1 ind	I total	1	1 h	T/T_1	Jsu,max	Jsu	Js,ACI	
	HUUK	lb	lb	lb	lb	lb	1/1 h	psi	psi	psi	failure/ $\sqrt{f_{_{cm}}}$
128	Α	64834	64834	128795	64397	61438	1.05	82068	81516	69089	4.6
120	В	64027	63961	120775	04377	01450	1.05	81047	01510	07007	4.0
129	Α	66512	66512	129507	64753	67620	0.96	84193	81966	84890	3.9
	В	63119	62994	/••/				79897			
130	Α	66000	64479	129061	64530	71117	0.91	83544	81684	91533	3.5
	В	64599	64582			,,		81771			
131	A	90544	88954	175422	87711	88168	0.99	114613	111027	118308	4.1
	B	86469	86469					109454			
132	A	59428	59428	120439	60219	67059	0.90	75225	76227	99111	3.4
	B	64145	61011					81196			
133	A	80288	59214	118481	59241	66818	0.89	101630	74988	81157	3.3
	В	59267	59267					75021			
134	A	48315	48315	96998	48499	55384	0.88	61158	61391	70845	3.3
	В	48683	48683					61624			
135	A	00222	89/83	180007	90003	80498	1.12	1412/8	113928	113633	4.3
	В	90223	90223					114207			
136	A	81187	81187	160681	80341	89047	0.90	102/08	101697	97934	4.3
	В	8/144	79494					112442			
137	A	89620	78290	154137	77069	78783	0.98	0(1((97555	87460	4.2
	В	799/1	/384/					90100			
138	A	/8862 75960	/8813	152863	76431	74137	1.03	99825	96749	79625	4.9
	В	70156	74050					90057			
139	A D	79150	79130	158301	79150	76237	1.04	100198	100190	86877	4.5
		55201	55201					70116			
140	R	56240	56228	111619	55810	57384	0.97	71100	70645	63527	4.2
		68822	68822					87116			
141	B	8222	66841	135663	67831	67620	1.00	10/08/	85863	84890	3.7
	Δ	93337	93337					118148			
142	B	107709	93969	187306	93653	92056	1.02	136340	118548	77404	5.6
	A	100177	91540					126806			
143	B	90092	90092	181632	90816	77607	1.17	114041	114957	63618	6.2
	A	116352	99838					147281			
144	B	99672	99672	199509	99755	80367	1.24	126167	126272	69305	6.5
	A	105974	91613					134144			
145	В	90156	90118	181730	90865	90541	1.00	114121	115019	75856	4.7
1	А	115165	113609	100010			1.00	145779	100000		
146	В	92876	77301	190910	95455	77612	1.23	117565	120829	65551	5.6
1.47	А	103861	99392	10(212	00156	70240	1.04	131470	104040	(7551	5.0
147	В	96919	96919	196312	98156	/9340	1.24	122683	124248	67551	5.9

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Hook	Slip at Failure	Failure	f_{yt}	<i>d</i> _{tr}	A _{tr,l}	N _{tr}	S _{tr}	Acti	Ncti	S _{cti}	d _s	Ss	d _{cto}	Ncto	A_s	f_{ys}
		in.	Туре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
128	A B	0.047 0	F F	60	0.38	0.11	5	3.00	-	-	-	0.38	4.00	-	-	3.16	120
129	A B	0.224 0.252	F/S F/S	60	0.38	0.11	5	3.00	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
130	A B	0.44 0.547	F/S S/F	60	0.38	0.11	5	3.00	-	-	-	0.50	1.75	-	-	3.16	60
131	A B	-	F/S S/F	60	0.38	0.11	5	3.00	-	-	-	0.38	4.00	-	-	3.16	120
132	A B	0.236 0.246	F F	60	0.38	0.11	5	1.75	-	-	-	0.50	1.75	-	-	3.16	60
133	A B	0.123 0.101	F/S F	60	0.38	0.11	4	2.25	-	-	-	0.50	1.75	-	-	3.16	60
134	A B	-	F F	60	0.38	0.11	5	3.00	-	-	-	0.38	2.75	-	-	6.32	60
135	A B	- 0.407	F/S F/S	60	0.38	0.11	5	3.00	-	-	-	0.38	3.00	-	-	6.32	60
136	A B	.214(.026)	S/F S/F	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.375	2	3.16	60
137	A B		S S/F	60	0.38	0.11	5	3.00	1.00	5	3.0	0.50	3.00	0.375	1	3.16	60
138	A B		S/F S	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.5	2	3.16	60
139	A B	0.162	F F/S	60	0.38	0.11	5	3.00	0.55	5	3.0	0.38	3.50	0.5	2	3.16	60
140	A B		F F	60	0.38	0.11	5	3.00	1.20	6	3.0	0.50	1.50	-	-	3.16	60
141	A B	0.415	F/S F/S	60	0.38	0.11	5	3.00	0.88	8	4.0	0.50	4.00	0.375	2	3.16	60
142	A B	0.21	S/F F/S	60	0.5	0.20	4	4.00	0.88	8	4.0	0.38	3.50	0.375	2	3.16	60
143	A B	-	F/S F/S	60	0.5	0.20	4	4.00	1.60	8	4.0	0.50	3.50	0.5	1	3.16	60
144	A B		F/S S/F	60	0.5	0.20	4	4.00	1.60	8	4.0	0.50	3.50	0.5	1	3.16	60
145	A B	-	F/S S/F	60	0.5	0.20	4	4.00	0.88	8	4.0	0.38	3.50	0.375	2	3.16	60
146	A B	-	S F/S	60	0.5	0.20	4	4.00	1.60	8	4.0	0.50	3.50	0.5	1	3.16	60
147	A B		S/F F/S	60	0.5	0.20	4	4.00	1.60	8	4.0	0.50	3.50	0.5	1	3.16	60

Table A.2 Cont. Data and test results for specimens with No. 8 hooked bars

	Specimen	Hook	Bend	Trans. Reinf.	Hook Bar	l _{eh}	ℓ _{eh,avg}	f'c	Age	d _b
	-F		Angle	Orient.	Туре	in.	in.	psi	days	in.
148	11-8-90-0-0-2.5-2-25	A B	90°	Para	A1035	25.3 25.1	25.2	9460	9	1.41
149	11-8-90-0-0-2.5-2-17	A B	90°	Para	A1035	16.8 16.4	16.6	9460	9	1.41
150	11-12-90-0-0-2.5-2-17	A B	90°	Para	A1035	17.1 16.6	16.9	11800	36	1.41
151	11-5-90-0-i-2.5-2-14	A B	90°	Para	A615	13.5 15.3	14.4	4910	13	1.41
152	11-5-90-0-i-2.5-2-26	A B	90°	Para	A1035	26.0 26.0	26.0	5360	6	1.41
153	11-8-90-0-i-2.5-2-17	A B	90°	Para	A1035	17.3 18.0	17.6	9460	9	1.41
154	11-8-90-0-i-2.5-2-21	A B	90°	Para	A1035	20.0 21.1	20.6	7870	6	1.41
155	11-8-90-0-i-2.5-2-17	A B	90°	Para	A1035	16.3 18.1	17.2	8520	7	1.41
156	11-12-90-0-i-2.5-2-17	A B	90°	Para	A1035	16.1 16.9	16.5	11880	35	1.41
157	11-12-90-0-i-2.5-2-17.5	A B	90°	Para	A1035	17.6 17.8	17.7	13330	31	1.41
158	11-12-90-0-i-2.5-2-25	A B	90°	Para	A1035	24.9 24.4	24.6	13330	34	1.41
159	11-15-90-0-i-2.5-2-24	A B	90°	Para	A1035	24.0 24.8	24.4	16180	62	1.41
160	11-15-90-0-i-2.5-2-10 [‡]	A B	90°	Para	A615	9.5 9.5	9.5	14050	76	1.41
161	11-15-90-0-i-2.5-2-15 [‡]	A B	90°	Para	A1035	14.0 14.0	14.0	14050	77	1.41
162	11-5-90-0-i-3.5-2-17	A B	90°	Para	A1035	18.1 17.6	17.9	5600	24	1.41
163	11-5-90-0-i-3.5-2-14	A B	90°	Para	A615	14.8 15.3	15.0	4910	13	1.41
164	11-5-90-0-i-3.5-2-26	A B	90°	Para	A1035	26.3 25.8	26.0	5960	8	1.41
165	11-5-90-1#4-i-2.5-2-17	A B	90°	Para	A1035	17.8 17.6	17.7	5790	25	1.41
166	11-5-90-1#4-i-3.5-2-17	A B	90°	Para	A1035	17.8 17.8	17.8	5790	25	1.41
167	11-5-90-2#3-i-2.5-2-17	A B	90°	Para	A1035	17.4 17.8	17.6	5600	24	1.41
168	11-5-90-2#3-i-2.5-2-14	A B	90°	Para	A615	13.5 13.8	13.6	4910	13	1.41
169	11-12-90-2#3-i-2.5-2-17.5	A B	90°	Para	A1035	18.0 17.5	17.8	13710	30	1.41
170	11-15-90-2#3-i-2.5-2-23	A B	90°	Para	A1035	23.5 23.5	23.5	16180	62	1.41
171	11-15-90-2#3-i-2.5-2-10 [*]	A B	90°	Para	A615	10.0 10.0	10.0	14045	76	1.41
172	11-15-90-2#3-i-2.5-2-15 [‡]	A B	90°	Para	A1035	14.0 14.3	14.1	14045	80	1.41

Table A.3 Data and test results for specimens with No. 11 hooked bars

[‡] Specimen contained A1035 Grade 120 for column longitudinal steel

	Hook	R_r	b	h	h _{cl}	h _c	C _{so}	Cso,avg	C _{th}	Ch	N _h	Axial Load	Long. Reinf. Lavout ^o
	Δ		in.	in.	in.	in.	$\frac{1}{26}$	in.	$\frac{\text{in.}}{2}$	in.		kips	
148	B	0.085	21.9	27.4	19.5	8.375	2.0	2.8	2.2	13.6	2	169	A16
149	A B	0.085	21.4	19.3	19.5	8.375	2.5 2.4	2.4	2.6 2.9	13.8	2	116	A16
150	A B	0.085	21.6	19.3	19.5	8.375	2.5 2.5	2.5	2.2 2.7	13.8	2	117	A7
151	A B	0.069	21.6	16.0	19.5	8.375	2.8 2.8	2.8	2.5 0.8	13.3	2	97	A7
152	A B	0.085	21.5	28.1	19.5	8.375	2.5 2.9	2.7	2.1 2.1	13.3	2	169	A12
153	A B	0.085	21.2	19.3	19.5	8.375	2.5 2.5	2.5	2.0 1.3	13.4	2	114	A16
154	A B	0.085	21.1	23.4	19.5	8.375	2.5 2.8	2.6	3.4 2.3	13.0	2	138	A13
155	A B	0.085	21.3	19.3	19.5	8.375	2.5 2.5	2.5	3.0 1.1	13.5	2	115	A8
156	A B	0.085	21.2	19.3	19.5	8.375	2.5 2.6	2.6	3.1 2.4	13.3	2	114	A13
157	A B	0.085	22.8	19.8	19.5	8.375	3.8 2.5	3.1	2.1 2.0	13.8	2	126	A7
158	A B	0.085	20.9	27.3	19.5	8.375	2.5 2.5	2.5	2.4 2.9	13.1	2	160	A12
159	A B	0.085	21.3	26.0	19.5	8.375	2.5 2.5	2.5	2.0 1.3	13.5	2	155	A11
160	A B	0.085	21.9	12.0	19.5	8.375	2.8 2.7	2.7	2.5 2.5	13.6	2	74	A15
161	A B	0.085	21.4	17.0	19.5	8.375	2.8 2.8	2.8	3.0 3.0	13.0	2	102	A15
162	A B	0.085	23.8	20.0	19.5	8.375	4.0 3.9	3.9	1.8 2.5	13.1	2	133	A7
163	A B	0.069	23.7	16.3	19.5	8.375	3.8 3.9	3.8	1.5 1.0	13.3	2	108	A7
164	A B	0.085	23.8	28.4	19.5	8.375	3.8 3.8	3.8	2.1 2.6	13.5	2	189	A12
165	A B	0.085	21.4	19.6	19.5	8.375	2.8 2.8	2.8	1.8 2.0	13.1	2	117	A7
166	A B	0.085	23.6	19.5	19.5	8.375	3.8 3.9	3.8	1.8 1.8	13.1	2	129	A7
167	A B	0.085	21.3	19.6	19.5	8.375	2.5 2.6	2.6	2.3 1.8	13.4	2	117	Α7
168	A B	0.069	21.7	16.0	19.5	8.375	2.8 2.9	2.8	2.5 2.3	13.3	2	97	A7
169	A B	0.085	21.1	19.5	19.5	8.375	2.5 2.5	2.5	1.5 2.0	13.3	2	115	A7
170	A B	0.085	21.3	25.0	19.5	8.375	2.8 2.8	2.8	1.5 1.5	13.0	2	149	A11
171	A B	0.085	22.0	12.0	19.5	8.375	2.8 3.0	2.9	2.0 2.0	13.4	2	74	A15
172	A B	0.085	21.5	17.0	19.5	8.375	2.6 2.6	2.6	3.0 2.8	13.6	2	102	A15

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		Tmax	Tind	Ttotal	T		speeim	fsu.max	fsu	fs.ACI	Joint shear at
	Hook	lb	lb	lb	lb	lb	<i>T/T</i> h	psi	psi	psi	failure/ $\sqrt{f_{cm}}$
148	A B	194500 170700	178670 170860	349530	174765	173772	1.01	124679 109423	112029	124103	4.1
149	A B	121403 105721	108779 105638	214417	107209	111429	0.96	77822 67770	68723	81606	3.7
150	A B	123725 105794	105010 105794	210804	105402	121183	0.87	79311 67817	67565	92862	3.2
151	A B	67249 81430	67249 65931	133180	66590	79286	0.84	43108 52199	42686	51027	3.8
152	A B	165682 146801	150653 146801	297454	148727	152421	0.98	106206 94103	95338	96429	4.6
153	A B	131998 141233	131969 132141	264111	132055	119020	1.11	84614 90534	84651	86842	4.6
154	A B	127061 147904	127061 123191	250252	125126	132865	0.94	81449 94810	80209	92409	3.9
155	A B	105626 115172	105537 104020	209557	104779	112427	0.93	67709 73828	67166	80368	3.8
156	A B	148361 120380	148361 120380	268741	134371	118562	1.13	95103 77167	86135	91106	4.1
157	A B	125648 123622	125648 123597	249245	124622	131960	0.94	80544 79245	79886	103451	3.3
158	A B	205050 198110	201395 198091	399486	199743	187403	1.07	131443 126994	128040	144027	4.2
159	A B	212601 231323	212601 213928	426530	213265	196102	1.09	136283 148284	136708	157068	4.2
160	A B	52097 50882	52097 50866	102962	51481	69331	0.74	33395 32617	33001	57045	2.3
161	A B	93327 91008	93327 91008	184335	92168	104578	0.88	59825 58339	59082	84066	2.9
162	A B	105772 117570	105772 110472	216244	108122	103770	1.04	67803 75366	69309	67763	4.2
163	A B	82601 68982	70046 68982	139027	69514	82944	0.84	52949 44219	44560	53246	3.5
164	A B	198346 181661	183026 181481	364508	182254	157184	1.16	127145 116449	116829	101683	4.8
165	A B	99443 119681	99403 103592	202995	101498	115679	0.88	63746 76718	65063	68180	4.4
166	A B	105692 108846	103693 108846	212540	106270	116068	0.92	67751 69773	68122	68421	4.2
167	A B	108406 103234	98172 103218	201390	100695	108250	0.93	69491 66176	64548	66578	4.4
168	A B	77718 77214	77718 77127	154845	77422	81310	0.95	49819 49496	49630	48365	4.4
169	A B	133178 129868	132555 128223	260779	130389	139941	0.93	85371 83249	83583	105286	3.7
170	A B	232100 206900	212550 206600	419150	209575	195050	1.07	148782 132628	134343	151429	4.2
171	AB	64250 63631	64250 63631	127881	63940	79600	0.80	41186 40789	40987	60036	2.8
172	A B	115577 114801	115577 114801	230377	115189	111959	1.03	74088 73590	73839	84801	3.6

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

	Hook	Slip at Failure	Failure	f_{yt}	<i>d</i> _{tr}	A _{tr,l}	N _{tr}	S _{tr}	A _{cti}	Ncti	S _{cti}	d_s	Ss	d _{cto}	Ncto	A_s	f_{ys}
		in.	Туре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
148	A B	-	S S	60	-	-	-	-	-	-	-	0.50	6.0	-	-	9.48	60
149	A B	-	S/F S/TK	60	-	-	-	-	-	-	-	0.50	6.0	-	-	9.48	60
150	A B	0.143	F/TK F/TK	60	-	-	-	-	-	-	-	0.50	3.5	-	-	4.74	60
151	A B	0.139	F/S S	60	-	-	-	-	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
152	A B	-	F/S F/S/TK	60	-	-	-	-	1.86	6	4.0	0.50	4.0	0.375	1	6.32	60
153	A B	-	F/TK F/TK	60	-	-	-	-	-	-	-	0.50	6.0	-	-	9.48	60
154	A B	-	F/TK F	60	-	-	-	-	-	-	-	0.50	6.0	-	-	9.40	60
155	A B	-	S F	60	-	-	-	-	-	-	-	0.50	8.0	-	-	6.28	60
156	A B	-	S S/F	60	-	-	-	-	-	-	-	0.50	6.0	-	-	9.40	60
157	AB	- 0.25	S/TK S	60	-	-	-	-	2.4	12	4.0	0.50	4.0	-	-	4.74	60
158	AB	-	S S	60	-	-	-	-	3.6	18	4.0	0.50	4.0	0.5	1	6.32	60
159	A B	-	S/TK S/TK	60	-	-	-	-	-	-	-	0.50	3.5	-	-	6.32	60
160	A B	-	F F	60	-	-	-	-	-	-	-	0.50	4.5	-	-	6.94	120
161	A B	-	S S	60	-	-	-	-	-	-	-	0.50	4.5	-	-	6.94	120
162	AB	0.187	S/TK S	60	-	-	-	-	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
163	A B	-	F/S F/S/TK	60	-	-	-	-	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
164	A B	-	S/F F/S	60	-	-	-	-	1.86	6	4.0	0.50	4.0	0.375	1	6.32	60
165	A B	-	S/F F/S	60	0.5	0.20	1	8.75	2.2	11	4.0	0.50	4.0	0.375	2	4.74	60
166	A B	-	S S/F/TK	60	0.5	0.20	1	8.75	2.2	11	4.0	0.50	4.0	0.375	2	4.74	60
167	A B	-	S/F S/F	60	0.375	0.11	2	8.00	2	10	4.0	0.50	4.0	0.375	2	4.74	60
168	A B	0.206	F/S S	60	0.375	0.11	2	8.00	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
169	A B	-	S S	60	0.375	0.11	2	12.00	2.4	12	4.0	0.50	4.0	-	-	4.74	60
170	A B	-	S S/F	60	0.375	0.11	2	8.00	-	-	-	0.50	3.0	-	-	6.32	60
171	A B	-	F F	60	0.38	0.11	2	8.00	-	-	-	0.50	4.5	-	-	6.94	120
172	A	-	F/S F/S	60	0.375	0.11	2	8.00	-	-	-	0.50	4.5	-	-	6.94	120

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

	Specimen	Hook	Bend Angle	Trans. Reinf.	Hook Bar	l _{eh} in	l _{eh,avg}	f'c	Age	d _b
			8	Orient.	Туре		111.	psi	uays	111.
173	11-5-90-2#3-i-3.5-2-17	A B	90°	Para	A1035	17.5 17.8	17.6	7070	28	1.41
174	11-5-90-2#3-i-3.5-2-14	A B	90°	Para	A615	14.5 13.4	13.9	4910	12	1.41
175	11-5-90-5#3-i-2.5-2-14	A B	90°	Para	A615	14.3 13.5	13.9	4910	12	1.41
176	11-5-90-5#3-i-3.5-2-14	A B	90°	Para	A615	14.6 14.5	14.6	4910	14	1.41
177	11-8-90-6#3-0-2.5-2-16	A B	90°	Para	A1035	15.9 16.5	16.2	9420	8	1.41
178	11-8-90-6#3-0-2.5-2-22	A B	90°	Para	A1035	21.5 22.3	21.9	9120	7	1.41
179	11-12-90-6#3-0-2.5-2-17	A B	90°	Para	A1035	15.6 17.3	16.4	11800	36	1.41
180	11-5-90-6#3-i-2.5-2-20	A B	90°	Para	A1035	19.5 19.0	19.3	5420	7	1.41
181	11-8-90-6#3-i-2.5-2-16	A B	90°	Para	A1035	15.5 16.4	15.9	9120	7	1.41
182	11-8-90-6#3-i-2.5-2-22	A B	90°	Para	A1035	21.3 21.5	21.4	9420	8	1.41
183	11-8-90-6#3-i-2.5-2-22	A B	90°	Para	A1035	21.9 22.0	21.9	9420	8	1.41
184	11-8-90-6#3-i-2.5-2-15	A B	90°	Para	A1035	15.8 15.3	15.5	7500	5	1.41
185	11-8-90-6#3-i-2.5-2-19	A B	90°	Para	A1035	19.1 19.4	19.2	7500	5	1.41
186	11-12-90-6#3-i-2.5-2-17	A B	90°	Para	A1035	17.1 16.5	16.8	12370	37	1.41
187	11-12-90-6#3-i-2.5-2-16	A B	90°	Para	A1035	14.8 16.0	15.4	13710	31	1.41
188	11-12-90-6#3-i-2.5-2-22	A B	90°	Para	A1035	21.9 21.5	21.7	13710	31	1.41
189	11-15-90-6#3-i-2.5-2-22	A B	90°	Para	A1035	22.3 22.4	22.3	16180	62	1.41
190	11-15-90-6#3-i-2.5-2-10a [‡]	A B	90°	Para	A615	9.5 10.0	9.8	14045	76	1.41
191	11-15-90-6#3-i-2.5-2-10b [‡]	A B	90°	Para	A615	9.5 9.8	9.6	14050	77	1.41
192	11-15-90-6#3-i-2.5-2-15 [‡]	A B	90°	Para	A1035	14.5 15.0	14.8	14045	80	1.41
193	11-5-90-6#3-i-3.5-2-20	A B	90°	Para	A1035	20.5 20.3	20.4	5420	7	1.41
194	11-5-90-5#4s-i-2.5-2-20	A B	90°	Para	A1035	20.0 20.3	20.1	5420	7	1.41
195	11-5-90-5#4s-i-3.5-2-20	A B	90°	Para	A1035	19.8 19.3	19.5	5960	8	1.41

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

[‡] Specimen contained A1035 Grade 120 for column longitudinal steel ^a Heat 1, ^b Heat 2, ^c Heat 3 as described in Table 2

	Hook	R _r	b in	h in	h _{cl}	h _c	c _{so}	C _{so,avg}	C _{th}	C _h in	N _h	Axial Load kins	Long. Reinf. Layout ^o
172	А	0.005	ш. 22.4	10.7	10.5		3.6	2.6	2.1	12.4	2	120	.7
1/3	В	0.085	23.4	19.7	19.5	8.375	3.6	3.6	2.0	13.4	2	129	A/
174	A B	0.069	23.7	16.1	19.5	8.375	3.8 3.9	3.8	1.6 2.8	13.3	2	107	A7
175	A B	0.069	21.8	16.0	19.5	8.375	2.8 2.9	2.8	1.8 2.5	13.4	2	98	A7
176	A B	0.069	23.7	16.0	19.5	8.375	3.9 3.9	3.9	1.4 1.5	13.1	2	106	A7
177	A B	0.085	21.6	18.1	19.5	8.375	2.5 2.6	2.6	2.3 1.6	13.6	2	109	A16
178	A B	0.085	21.4	24.4	19.5	8.375	2.5 2.6	2.6	2.9 2.1	13.5	2	146	A16
179	A B	0.085	21.4	19.3	19.5	8.375	2.5 2.4	2.4	3.6 2.0	13.8	2	116	A7
180	A B	0.085	20.9	22.3	19.5	8.375	2.6 2.6	2.6	2.8 3.3	12.9	2	130	A7
181	A B	0.085	21.2	18.3	19.5	8.375	2.5 2.5	2.5	2.8 1.9	13.4	2	108	A16
182	A B	0.085	21.4	24.1	19.5	8.375	2.5 2.6	2.6	2.8 2.6	13.5	2	145	A11
183	A B	0.085	21.7	24.2	19.5	8.375	2.6 2.9	2.8	2.3 2.2	13.4	2	147	A16
184	A B	0.085	21.6	17.3	19.5	8.375	2.8 2.5	2.6	1.5 2.0	13.5	2	104	A13
185	A B	0.085	21.4	21.0	19.5	8.375	2.5 2.6	2.6	2.0 1.7	13.5	2	126	A13
186	A B	0.085	21.4	19.1	19.5	8.375	2.6 3.0	2.8	1.9 2.6	13.0	2	114	A13
187	A B	0.085	20.8	18.0	19.5	8.375	2.5 2.5	2.5	3.3 2.0	13.0	2	105	A7
188	A B	0.085	22.1	24.3	19.5	8.375	2.9 3.1	3.0	2.4 2.8	13.3	2	150	A12
189	A B	0.085	21.8	24.0	19.5	8.375	3.0 2.5	2.8	1.8 1.6	13.5	2	147	A10
190	A B	0.085	21.5	12.0	19.5	8.375	2.6 2.8	2.7	2.5 2.0	13.4	2	72	A15
191	A B	0.085	21.4	12.0	19.5	8.375	2.8 2.8	2.8	2.5 2.3	13.0	2	72	A10
192	A B	0.085	21.5	17.0	19.5	8.375	2.6 2.6	2.6	2.5 2.0	13.6	2	102	A15
193	A B	0.085	23.6	22.3	19.5	8.375	3.8 3.9	3.8	1.8 2.0	13.1	2	147	A7
194	A B	0.085	21.4	22.3	19.5	8.375	2.5 2.8	2.6	2.3 2.0	13.4	2	134	A7
195	A	0.085	23.4	22.0	19.5	8.375	3.8	3.8	2.3	13.1	2	144	A7

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

^o Longitudinal column configurations shown in Appendix A, Figures A1 – A16

		T		T.		T.	speenne		f f	f	Loint choon of
	Haak	I max	I ind	I total	1	I h	T/T.	Jsu,max	Jsu	Js,ACI	Joint snear at
	HOOK	lb	lb	lb	lb	lb	1/1 h	psi	psi	psi	failure/ $\sqrt{f_{_{CM}}}$
173	Α	107807	107807	219287	109644	115784	0.95	69107	70284	75074	3.9
	В	111480	111480					71462			
174	Α	92719	82732	164549	82275	83132	0.99	59435	52740	49474	4.2
	В	81848	81817	10.0.1	02270	00102	0.77	52467	027.0	., ., .	
175	Α	105597	96267	190339	95170	96880	0.98	67690	61006	49252	53
175	В	94115	94072	170337	90170	20000	0.70	60330	01000	17232	5.5
176	Α	101315	101315	195979	97989	100897	0.97	64946	62814	51693	5.1
170	В	94663	94663	190919	,,,,,,,,,	100007	0.97	60682	02011	01090	011
177	Α	138900	138793	273507	136753	129138	1.06	89038	87662	99487	49
1,,	В	134714	134714	2,000,	100,00	12,100	1.00	86355	0,002		,
178	Α	186100	170000	340498	170249	168582	1.01	119295	109134	132284	4.7
	В	170498	170498					109294			,
179	Α	116430	116390	231757	115878	138370	0.84	74635	74281	113068	3.5
112	В	147268	115367	201707	110070	100070	0.0.1	94403	/ .=01	112000	
180	Α	153119	137617	272543	136272	131706	1.03	98153	87354	89741	5.5
	В	134977	134927					86524			
181	Α	147508	136385	265971	132986	126362	1.05	94556	85247	96379	4.9
101	В	129692	129586	2007/1	102,000	120002	1100	83136	002.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
182	Α	204260	186246	369138	184569	166360	1.11	130936	118314	131369	5.1
10-	В	183175	182892	202120	10.009	100200		117420	11001	101003	
183	Α	197739	190740	382084	191042	170431	1 12	126756	122463	134827	52
100	В	191344	191344	20200.	1910.2	170101		122656	122.00	10.027	0.2
184	Α	142278	108602	216623	108312	117618	0.92	91204	69431	85001	4.6
10.	В	108021	108021	210020	100012	11,010	0.72	69245	07.01	00001	
185	Α	182735	144766	290860	145430	142479	1.02	117138	93224	105395	5.1
100	В	146093	146093		1.0.00	1.2.175	1.02	93650		100070	
186	Α	179693	161019	323295	161648	142884	1 13	115188	103620	118408	49
100	В	162285	162277	525275	101010	112001	1.1.5	104029	105020	110100	,
187	Α	115139	115089	230394	115197	135193	0.85	73807	73844	113998	3.6
107	В	127542	115306	20007	110127	100170	0100	81758	,2011	110000	210
188	Α	206283	203983	402379	201189	185650	1.08	132233	128967	160802	4.4
	В	199234	198395					127714			
189	A	204557	200084	395618	197809	199073	0.99	131126	126801	179722	4.1
	В	195710	195534					125455			
190	A	83558	83558	165362	82681	91774	0.90	53563	53001	73169	3.7
	B	81804	81804					52438			
191	A	76605	76605	151158	75579	90813	0.83	49106	48448	72244	3.4
-	В	74596	74553					47818		-	_
192	A	145670	145664	290534	145267	131029	1.11	93378	93120	110692	4.6
	В	144870	144870					92866			
193	A	150216	136607	271643	135821	138606	0.98	96293	87065	94986	4.8
	В	135259	135036					86704			
194	A	141399	141399	282090	141045	155218	0.91	90640	90414	75057	5.5
	В	161640	140691			-		103615			-
195	A	186703	152402	305934	152967	154532	0.99	119681	98056	76262	5.3
	В	153546	153532					98427		-	-

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

	Hook	Slip at Failure	Failure	f_{yt}	<i>d</i> _{tr}	A _{tr,l}	N _{tr}	S _{tr}	Acti	Ncti	S _{cti}	d_s	Ss	d _{cto}	Ncto	A_s	f_{ys}
		in.	Туре	ksi	in.	in. ²		in.	in. ²		in.	in.	in.	in.		in. ²	ksi
173	A B	-	S/F/TK S	60	0.375	0.11	2	8.00	2	10	4.0	0.50	4.0	0.375	2	4.74	60
174	A B	-	F/S S/F/TK	60	0.375	0.11	2	8.00	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
175	A B	0.397 0.375	S/F S/F	60	0.375	0.11	5	4.38	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
176	A B	-	F/S S/F	60	0.375	0.11	5	4.38	2.4	12	4.0	0.50	4.0	0.375	2	4.74	60
177	A B	-	S/F S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.48	60
178	A B	-	S S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.48	60
179	A B	-	F/S S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	3.5	-	-	4.74	60
180	A B	0.274	F/S F/S	60	0.375	0.11	6	4.00	1.2	6	4.0	0.50	4.0	0.375	2	4.74	60
181	A B	-	F/S F/S	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.48	60
182	A B	-	* S	60	0.375	0.11	6	4.00	-	-	-	0.50	2.5	-	-	6.32	60
183	A B	-	* S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.48	60
184	A B	-	S S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.40	60
185	A B	-	F/S F/S	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.40	60
186	A B	0.334	F/S SP/S	60	0.375	0.11	6	4.00	-	-	-	0.50	6.0	-	-	9.40	60
187	A B	- 0.952	S/F S/F	60	0.375	0.11	6	4.00	2.4	12	4.0	0.50	4.0	0.375	1	4.74	60
188	A B	-	S/F F	60	0.375	0.11	6	4.00	3.06	12	4.0	0.50	4.0	0.375	2	6.32	60
189	A B	-	F/S S/F	60	0.375	0.11	6	4.00	-	-	-	0.50	3.0	-	-	6.32	60
190	A B	-	F F	60	0.375	0.11	6	4.00	-	-	-	0.50	4.5	-	-	6.94	120
191	A B	-	F F	60	0.375	0.11	6	4.00	-	-	-	0.50	4.5	-	-	6.32	120
192	A B	-	F F	60	0.375	0.11	6	4.00	-	-	-	0.50	4.5	-	-	6.94	120
193	A B	-	S/F S	60	0.375	0.11	6	4.00	1.2	6	4.0	0.50	4.0	0.375	2	4.74	60
194	A B	-	F/S F/S	60	0.5	0.20	5	5.00	4	10	5.0	0.50	5.0	0.375	2	4.74	60
195	A B	-	S/F F/S	60	0.5	0.20	5	5.00	4	10	5.0	0.50	5.0	0.375	2	4.74	60

Table A.3 Cont. Data and test results for specimens with No. 11 hooked bars

*Test terminated prior to failure of second hooked bar